دراسة نقاط البيانات البينية باستخدام خوارزمية (Fuzzy C-Means)
DOI:
https://doi.org/10.36602/ijeit.v12i1.501Keywords:
تعلم الآلة, التجميع الصلب, التجميع اللين, المنطق الضبابي, التداخل, SilhouetteAbstract
تلعب طبيعة مجموعة البيانات دورا بارزا في تحديد خوارزمية التجميع المناسبة، ويعتبر تداخل نقاط البيانات أحد أبرز التحديات المؤثرة على أداء الخوارزمية وجودة نتائجها. من جانب آخر، ينظر إلى معيار المسافة على أنه المعيار الوحيد المستخدم لتجميع نقاط البيانات، ويعتبر أحد التحديات المؤثرة التي تحظى بالاهتمام البحثي. في هذه الورقة، تم دراسة النقاط البينية لمجموعة البيانات المتداخلة والمتموضعة بين التجمعات ومدى تأثيرها على أداء خوارزميات التجميع وذلك باستخدام خوارزمية (Fuzzy C-Means) ومعيار درجة العضوية بالإضافة إلى معيار المسافة. أظهرت النتائج أن النقاط البينية لمجموعة البيانات لها تأثير مباشر على أداء خوارزميات التجميع، وخلص البحث إلى أن مجموعة البيانات تحدد طبيعة المعالجة لهذه النقاط، إما باستبعادها وتجاهل تأثيرها أو بوضعها في تجمع مستقل ومن ثم تحليله مع بقية التجمعات.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The International Journal of Engineering & Information Technology (IJEIT)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.










