Classification Libya cities database of optical handwriting recognition using MLP

المؤلفون

  • Khoula iswikan Sebha University, Libya

DOI:

https://doi.org/10.36602/ijeit.v12i1.492

الكلمات المفتاحية:

classification، Libyan Cities، MLP، optical handwriting recognition

الملخص

This paper aims to describe the process of classifying the Libyan Cities database for handwriting recognition using the Multi-Layer Perceptron (MLP) network, MLP consists of multiple layers of neural units. The Libyan cities data set for optical recognition of handwriting consists of 5000 digital samples of Libyan city names as binary images. The training data set was used to train the MLP model, and the test data set was used to evaluate the model’s performance, reaching an accuracy of 80.6%.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

التنزيلات

منشور

2024-08-20

إصدار

القسم

المقالات

كيفية الاقتباس

Classification Libya cities database of optical handwriting recognition using MLP. (2024). The International Journal of Engineering & Information Technology (IJEIT), 12(1). https://doi.org/10.36602/ijeit.v12i1.492

المؤلفات المشابهة

1-10 من 53

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.