Monte Carlo Simulations of Bragg Peak Curves for Mono-Energetic Proton Beams

محتوى المقالة الرئيسي

Saleh M. Ben Saleh

الملخص

As an energetic proton beam penetrates into
matter its energy loss rate (stopping power) increases with
penetration depth reaching a maximum value in a region
known as Bragg peak. The main objective of this study is to
determine the penetration depths of mono- energetic
protons in water using Monte Carlo simulations.. The
outputs of the simulations were analysed using ROOT
analysis software. Validation of the Monte Carlo model was
carried out by comparing proton ranges in water obtained
with Geant4 simulations against data obtained from the
NIST database. The simulation results were in excellent
agreement (within an approximately 0.5% uncertainty) with
NIST data.

تفاصيل المقالة

كيفية الاقتباس
Saleh M. Ben Saleh. (2024). Monte Carlo Simulations of Bragg Peak Curves for Mono-Energetic Proton Beams. The International Journal of Engineering & Information Technology (IJEIT), 4(1). https://doi.org/10.36602/ijeit.v4i1.391
القسم
المقالات

المراجع

R. R. Wilson, “Radiological use of fast protons”. Radiology, 1946, 47:487-491. DOI: https://doi.org/10.1148/47.5.487

R. D. Evans, “The Atomic Nucleus‖. Mc Graw-Hills (1955).

K. Parodi, H. Paganetti, H. A. Shih, S. Michaud, J. S. Loeffler, T. F. DeLaney, Liebsch NJ, et al, ―Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy”. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68:920–34. DOI: https://doi.org/10.1016/j.ijrobp.2007.01.063

T. Liamsuwan, S. Uehara, D. Emfietzoglou, and H. Nikjoo, “Physical and biophysical properties of proton tracks of energies 1 keV to 300 MeV in water”. Inter. Jour. Radiat. Biolo. 2011, 87:141–160. DOI: https://doi.org/10.3109/09553002.2010.518204

A. C. Knopf, K. Parodi, H. Paganetti, T. Bortfeld, J. Daartz, M. Engelsman, N. Liebsch, and H. Shih, “Accuracy of proton beam range verification using post-treatment positron emission tomography/computed tomography as function of treatment site”. Int J. Radia. Oncolo. Biol. Phys. 2010, 1–8. DOI: https://doi.org/10.1016/j.ijrobp.2010.02.017

K. Parodi, A. Mairani, S. Brons, J. Naumann, M. Kramer, F. Sommerer, and T. Haberer, “The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study”. Phys. Med. Biol. 2010, 55:5169–87. DOI: https://doi.org/10.1088/0031-9155/55/17/018

L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, “GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans”. Phys. Med. Biol. 2012, 57:4223–44. DOI: https://doi.org/10.1088/0031-9155/57/13/4223

C. C. Lee, J. Y. Lee, J. C. Tung, W. H. Cheng, and C. T. Chao, “MCNPX simulation of proton dose distribution in homogeneous and CT phantoms”. Radiat. Phys. Chem. 2014, 95:302-4. DOI: https://doi.org/10.1016/j.radphyschem.2012.12.046

G. Battistoni, S. Muraro, P. R. Sala, F. Cerutti, A. Ferrari, and S. Roesler, “in Hadronic Shower Simulation Workshop”, edited by M. Albrow and R. Raja (American Institute of Physics, Batavia, 2006), Vol. 896, pp. 31–49. DOI: https://doi.org/10.1063/1.2720455

L. S. Waters, J. Hendricks, and G. McKinney, “Monte Carlo N-Particle Transport Code system for Multi-particle and High Energy Applications”. (Los Alamos, NM: Los Alamos National Laboratory, 2002).

S. Agostinelli, J. Allison, K. Amako, et al., “Geant4-a simulation toolkit‖. Nucl. Instrum. Meth. A, 2003, 506:250-303.

J. Apostolakis et al., “Geometry and physics of the Geant4 toolkit for high and medium energy applications”. Radiat. Phys. Chem. 2009, 78:859–873. DOI: https://doi.org/10.1016/j.radphyschem.2009.04.026

H Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch Materie“. Ann. Phys., 1930, 5:324-400. DOI: https://doi.org/10.1002/andp.19303970303

F Bloch,“Zur bremsung rasch bewegter teilchen beim durchgang durch Materie”. Ann. Phys., 1933, 16:285-320. DOI: https://doi.org/10.1002/andp.19334080303

U. Fano, “Penetration of protons, alpha particles and mesons”. Annu. Rev.

Nucl. Sci, 1963, 13:1-66. DOI: https://doi.org/10.1016/0042-207X(63)92469-2

W. D. Newhauser and R. Zhang, “The physics of proton therapy”. Physics in Medicine and Biology, 2015, 60(8):R155. DOI: https://doi.org/10.1088/0031-9155/60/8/R155

K. Nakamura et al, “Review of Particle Physics”. Phys. Rev. G, 37. Available at http://pdg.lbl.gov DOI: https://doi.org/10.1088/0954-3899/37/7A/075021

V.L. Highland, “Some practical remarks on multiple scattering”. Nucl. Instrum. Meth., 1975, 129:497. DOI: https://doi.org/10.1016/0029-554X(75)90743-0

G. Kraft, “Tumor therapy with heavy charged particles”. Prog. Part. Nucl. Phys., 200, 45:S473–S544. DOI: https://doi.org/10.1016/S0146-6410(00)00112-5

B. Gottschalk, A.M. Koehler, R.J. Schneider, J.M. Sisterson, and M.S. Wagner, “Multiple Coulomb scattering of 160 MeV protons”. Nucl Instrum Meth B, 1993, 74(4):467–490. DOI: https://doi.org/10.1016/0168-583X(93)95944-Z

J. J. Bevelacqua, “Systematics of heavy ion radiotherapy”. Radiation Protection managment, 2005, 22:4-13.

Physics Reference Manual, Version: geant4 10.0 (6 December 2013).

ROOT European Centre for Nuclear Research (CERN] available at http://root.cer..ch

R. Brun, F. Rademakers, “ROOT – An object oriented data analysis framework”, Nucl. Instr. Meth. Phys. Res., A389[1-2], 81-86 (1997). DOI: https://doi.org/10.1016/S0168-9002(97)00048-X

E. Pedroni , S. Scheib , T. Böringer, A. Coray, M. Grossman, S. Lin and A. Lomax, “Experimental characterization and physical modeling of the dose distribution of scanned proton pencil beams”. Phys. Med. Biol., 2005, 50:541–561. DOI: https://doi.org/10.1088/0031-9155/50/3/011

U. Schneider, S. Agosteo, E. Pedroni., et al., “Secondary neutron dose during proton therapy using spot scanning”. Int. J. Radiat Oncol. Biol. Phys., 2002, 53:244–251. DOI: https://doi.org/10.1016/S0360-3016(01)02826-7

E. J. Hall, “Radiobiology for the radiologist”. fifth edn. Lippincot, Williams and Wilkins, Philadelphia (2000)

E. J. Hall, “Intensity–modulated radiation therapy, protons, and the risk of second cancers”. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65:1–7. DOI: https://doi.org/10.1016/j.ijrobp.2006.01.027

G. Coutrakon, et al “Microdosimetry spectra of the Loma Linda proton beam and relative biological effectiveness comparisons”. Med. Phys. 1997, 24:1499. DOI: https://doi.org/10.1118/1.598038

M. J. Berger, J. S. Coursey, M. A. Zucker, and J. Chang, “estar, pstar, and astar: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions” (version 1.2.3). National Institute of Standards and Technology, Gaithersburg, MD, 2005, available athttp://physics.nist.gov/Star