
IJEIT, The international Eng. Conf. IECMU2022 , VOL.10,NO. 1, December 2022                                                                                901 

  

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-                                                                                   Paper ID: EN166 

 

Optimal Control Synthesis of Epidemic Model 
 

Ahmed J. Abougarair 
Electrical and Electronics Engineering,University of Tripoli  

 

 
Abstract— The spread of a virus or the outbreak of an 

epidemic are natural examples of stochastic processes. 

Understanding the epidemic dynamics, and finding out 

efficient techniques to control it, is a challenging issue. This 

paper investigates the optimal use of intervention strategies 

to mitigate the spread of infectious diseases. Classical 

mathematical descriptions of such phenomenon include 

various branching processes such as the SIR (Susceptible-

Infected-Recovered). One reason for mathematical 

modelling is to analyze and predict the extent of emerging 

diseases and develop proposed control measures. The 

quadratic regulator format was used to formulate the 

optimal control problem, and two different optimal control 

techniques were investigated: Single Network Adaptive 

Critic (SNAC), which is a direct application of 

reinforcement learning theory to the optimality necessary 

conditions, and Approximate Sequence Riccati Equation 

(ASRE), which is a global optimal feedback control 

technique for general nonlinear systems with nonquadratic 

performance criteria. According to the results obtained 

during simulations, we claim that the proposed model and 

control strategy can be considered a good candidate to study 

viral spreading in the world. Also, the result shows that the 

Single Network Adaptive Critic is more accurate than the 

Approximate Sequence Riccati Equation. 

 

Index Terms: ASRE, Epidemic, SNAC, SIR, Optimal control. 

I. INTRODUCTION 

hrough the last century, there have been significant 

decreases in the morbidity and mortality of many 

infectious diseases due to the introduction of medicines 

and vaccines, as well as better living conditions, 

including access to healthcare and surveillance systems. 

However, both in developing and developed nations, 

infectious diseases continue to be major sources of 

human suffering and death. A grasp of the 

epidemiological features of a disease is essential for the 

effective implementation of infectious disease control or 

prevention methods    . The process of constructing 

models requires an awareness of several facets of 

infectious diseases, such as the clinical and biological 

understanding of the infection agent. Additionally, 

research on the effects of earlier outbreaks of infectious 

illnesses on our health system is necessary for a deeper 

comprehension of their behavior [ ][ ]. 

    Infectious diseases are responsible for significant 

health and economic problem in society. Mathematical 

modelsuseassumptionsandstatisticalinferencesindetermini

ngparameters for the spread of diseases. Mathematical 

models in recent years have been used to guide policy 

makers responding to the emergency of the diseases 

including Measles  4  5  6 , H N  influenza [7][8], 

Hepatitis C Virus (HCV) [9][10], Whooping cough [11], 

HIV [12][13], Ebola [14][15][16], Coronavirus   7   8  

and many others. The behavior of the infectious disease is 

investigated and controlled using an optimal control 

strategy. The aim is to optimize the overall process, 

minimizing the infected people, and maximizing the 

recovery process.  

II. MATHEMATICAL MODEL OF SIR 

     In this paper, we studied the stochastic SIR epidemic 

model on complex networks. The stochastic model studied 

captured the randomness in disease transmission observed 

in a real-life epidemic which serves as a model to 

influence the outcome of an emerging epidemic. The SIR 

model, created by Kermack and McKendrick, is a 

straightforward representation of an infectious disease 

epidemic in a sizable population. The letters S, I, and R 

represent the numbers of the three sorts of people we 

believe make up the population (which is why this is 

called an SIR model). These are all time-dependent 

functions that vary in accordance with a set of differential 

equations. The SIR model is shown in Figure.  . 
 

Figure.   . SIR model without control 

 

   In the epidemiological SIR model here, the following 

assumptions are made   9 : 

- The way a person can leave the susceptible group (S), 

is to become infected, and the way a person can leave 

the infected group (I), is to recover from the disease. 

- Any recovered person in (R) has permanent 

immunity. 

- The size of the population is (N), where is a variable 

number and large, where N(t) = S(t) + I(t) + R(t). 

T 
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- The spreading rate (β) knows as the transmission rate. 

and the recovery rate (γ), is the same for all 

individuals and is supposed positive. 

    The model is a demography system i.e. birth rate, and 

death rate (taken into consideration). 

The equations of the SIR model are [ 9][  ]: 
  

  
     

   

 
     

 

  

  
 

   

 
        

 

  

  
         



The size of population (N) is a variable and large, Where: 

                      ( )   ( )   ( )   ( )                              
(4) 

  : with the positive sign is the fraction of total 

population, in other words is the birth rate. 

        and     with a negative sign, is the fraction of 

susceptible, infected, and recovery people, in other word 

is the death rate of mortality of individuals.  

     represents the number of newly infected individuals 

per unit time corresponds to homogeneous mixing of the 

infected and susceptible classes. 

    represents the portion of the infected individuals that 

recovering. 

The spreading rate      is ratio,  

                                            β  τc                                            
Where  𝜏  is the transmissibility (probability of infection 

given to contact between a susceptible and infected 

individual),   is the average rate of contact between 

susceptible and infected, but in, general the spreading rate 

is hard to predict. 

   The recovery rate is       can be measured in a 

laboratory, for, example if people, on average, stay sick 

for two days the recovery rate is   = 1/2, so recovery rate, 

in general is [ 9], 

                                        
 

 
                                                   

(6) 

Where   is duration of disease for those recovered.  

 

III. OPTIMAL CONTROL THEORY 

   A contemporary development of the calculus of 

variations, the theory of optimal control has found several 

uses in a variety of scientific disciplines, particularly in 

epidemiology with regard to the detection and treatment 

of disease     . 
 

A. Quadratic Regulator Problem 

     The Quadratic Regulator Problem (QRP) is the most       

famous type of the optimal control problem, where the 

aim is to minimize the total energy expenditure   of both 

the system states and control actions, which are weighted 

using the weighting matrices of  ( ) and  ( )  

respectively. In addition to minimizing the energy 

expenditure, the system is also required to satisfy the 

imposed constrains on the system, which come in two 

types, the first type is the equality constrains which are 

represented by the dynamic state constrains of the 

system, while the second type is the inequality constrains 

which often represent the physical limits on both the 

system states  ( ) and control actions ( ), in 

mathematical form the QRP can be formulated as: 

        
 ( )

   ( )  
 

 
 ∫   ( )    ( )   ( )   ( )  

 

 

                               ( )   ( )                                (7) 

             ̇( )   ( ( )  ( ))  ( )    

    ( )    

    ( )    

}    

     The state inequality constrains are often handled 

separately using either the valentine transformation  or 

the penalty function technique , on the other hand the 

control inequality constrains are handled through 

pontryagin's minimum principle (PMP) . 

    The necessary conditions for optimality for the QRP 

are derived from the Hamiltonian function which follows 

from the theory of Lagrange multipliers  ( ), the 

Hamiltonian function is formulated as: 

 ( ( )  ( )  ( ))  
 

 
  ( )   ( )   ( )   

      
 

 
  ( )   ( )   ( )   ( )   ( ( )  ( ))        (8) 

The necessary conditions follow as (corollary): 

State Equations: 

        ̇( )  
  ( ( )  ( )  ( ))

  ( )
  ( ( )  ( ))                  (9) 

Costate Equations: 

                    ̇( )   
  ( ( )  ( )  ( ))

  ( )
                           (  ) 

   ( )   ( )  *
  ( ( )  ( ))

  ( )
+
 

  ( )  

Optimal Control Equations: 

  ( ( )  ( )  ( ))

  ( )
    

          ( )       ( )  *
  ( ( )  ( ))

  ( )
+
 

  ( )             (  ) 

Boundary conditions: 

 ( )     

 ( )     

To handle the control inequality constrains, the PMP is 

applied as follows: 

 

 ( ( )   ( )  ( )  )    ( ( )  ( )  ( )  ) 

    If the QRP was applied in a discrete closed loop 

fashion, the PMP inequality relation simply becomes a 

saturation limiter as follows: 

 ( )  {

      ̅( )    

 ̅( )          

      ̅( )    

 

Where  ̅( ): is the optimal control at the discrete time 

step  , before applying the PMP. 

   The weighing matrices  ( ) and  ( ) are rarely chosen 

to be an independent function of time, however they often 

chosen to be function of the system states  ( ) making 

the optimal control problem more stable and robust to 

system changes i.e.,                 

 ( )   ( ( ))  ( )   ( ( ))  
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    Although the necessary conditions for optimality of the 

optimal control equation reduced the task of the optimal 

control problem to just solving the state and costate 

equations while satisfying the optimal control equations, 

however due to the inherent nonlinearity in these 

equations and the split in boundary conditions (which is 

often referred to as the curse of complexity), these 

equations are often solved using very complex solvers. 

   In this paper two different closed loop techniques are 

used to solve this problem namely: The Approximate 

Sequence Ricatti Equation (ASRE), and The Single 

Network Adaptive Critic (SNAC)        ]   ]. 
 

B. Approximate Sequence Riccati Equation (ASRE) 

 This technique starts by formulating the system in the 

following state dependent nonaffine continuous 

differential form: 

     ̇( )   ( ( ))   ( )   ( ( )  ( ))   ( )  (  ) 

The latter form uses the State dependent coefficient 

(SDC) parameterization, which is the process of 

transforming a nonlinear system into linear like structure, 

it is termed nonaffine since the   matrix is a function of 

the control signals  ( ), unlike other techniques (such as 

State Dependent Riccati Equation (SDRE)) which 

requires that the   matrix to be affine i.e.,    ( ( )). 

   The technique then defines a sequence of riccati 

equations which are arbitrary close to the true system, 

where each equation (except the first one) is a direct 

application of the extended linearization theory on the 

linear quadratic regulator (LQR) of time variant systems, 

these equations are then solved sequentially, where the 

solution of one riccati equation is the starting solution of 

the next riccati equation. 

The ASRE methodology is formulated as follows: 

The system dynamic (state) equations at the     iteration 

takes the following form: 

                  ̇     (  )        (    )                 ( 4) 

And for the     iteration, where    , takes the 

following form:   

         ̇     (      )         (              )         
( 5) 

And the initial conditions for all the iterations are: 

    (  )     

The riccati equation at the     iteration takes the 

following form (note that the time dependency was drop 

for convince): 

       (      )    (      )            

  (              )   

            (              )    (              )      

          (      )                                                         ( 6) 

   The   matrix (which describes the relation between the 

costate and state variables i.e.,  ( )   ( )   ) is the 

only unknown in this equation, and it is used to calculate 

the control signal at the     iteration as follows: 

          (      )    (                )             
   This iteration process is repeated until the following 

convergence criterion is satisfied: 

                             ‖           ‖                              
( 7) 

Where:   is some specified tolerance   4]  5]. 

C. Single Network Adaptive Critic (SNAC) 

    Dynamic programming provides the most intuitive and 

comprehensive solution to general optimal control 

problems in a state feedback form, however dynamic 

programming relies fundamentally on solving the 

Hamilton Bellman equation, unfortunately the 

computational demands of this equation grow 

exponentially with the complexity of the problem.  

    Fortunately, Werbos in 1992 get around this problem 

using the concept of Approximate dynamic programming 

(ADP). One famous way to implement the ADP is 

through the Action Critic network (AC), this network 

compromises of two networks namely Action, and Critic. 

The Action network learns to find the relation between 

the states   of the system and the control action   at the 

same discrete time step  , while the Critic network learns 

to find the relation between the system states   and the 

costates   at the same discrete time step  , this learning 

process is achieved using the Dual Heuristic 

Programming (DHP), where the necessary conditions for 

optimality are used heuristically to train these networks. 

A special type of the AC network arises when the system 

model is affine in the control signals, this type is called 

Single Network Adaptive Critic (SNAC). Since the 

control signals   are affine, then only the states and 

costate variables are needed in the optimal control 

equation and hence the action network is no longer 

required. The SNAC technique trains the critic network 

to achieve the relation between the states   at time step   

and the costates   at the next time step    , the training 

procedure of the SNAC technique consists of two parts: 

    Pretraining: before straining with the actual procedure 

of the SNAC technique, the critic network is pretrained 

with a stabilizing control rule first, which may be hard to 

find, however the authors in found that the LQR 

technique applied on linear model of the system does the 

job (especially when the desired equilibrium point is 

stable). 

The training procedure of the SNAC technique is as 

follows: 

   Generate   random states vectors                 , 

in their admissible region. 

   Feed these states into the critic network, to get the 

estimated next costate vectors 

 ̂       ̂         ̂     . 

   The resultant next costate vectors along with the 

state vectors are fed to the optimal control equation 

to get the following control vectors 

                . 

4  The resultant control vectors along with the current 

states are fed to the system model to obtain the next 

states                        

5  The resultant next states vectors are fed to the critic 

network to get the estimated next-next costate 

vectors of  ̂       ̂         ̂     . (Note that the 

critic network gives the costate vector which is one 

step ahead in time with respect to the input state 

vector). 
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6  Feeding the resultant next-next costate vectors along 

with the next state vectors (resultant from the system 

model) to the costate equation heuristically results in 

a better next costate vectors                        

than the ones obtained previously, hence they are 

used to train the critic network   9   6   7]. 

7  The SNAC technique is also applied iteratively until 

the mean squared error      ‖        ̂     ‖ (for 

     ) is less than a specified limit. 

IV. OPTIMAL  CONTROL  PROBLEM 

FORMULATION 

       The first step in formulating the optimal control 

problem is to put the model in the state dependent form 

of: 

         ̇( )   ( ( ))   ( )   ( ( )  ( ))   ( )    ( 8) 

In order to do this, the equilibrium points of the system 

must be first be calculated, and then the desired one must 

be shifted to the origin   9   8   9 . 

A change of variables is first applied to the system model 

of with the following substitutions: 

  [

  

  

  

]  [
 
 
 
]    *

  

  
+  [

  

  
] 

The resultant model is: 

              ̇( )      
       

 
                     

( 9) 

               ̇( )  
       

 
                                 

(  ) 

          ̇( )                                    

(  ) 

This system has the following two equilibrium points: 

 Dead: where all the population is susceptible to the 

disease: 

                            [

  

  
  

]  [
  

 

 

 
 

]                             

(  ) 

 Live: where most of final population are recovered 

from the disease: 

                  [

   

   

   

]  

[
 
 
 
   

   

 

  (          )

  (   )

    (          )

    (   ) ]
 
 
 
 

                    (  ) 

The model is now shifted, such that the Live equilibrium 

point is now at the origin as follows: 

  ̇( )   
 

  (   )

  (            ( )     

   ( )) 

   ( )   (   )    ( )    ( )  (  ( )     
) 

  ̇( )  
 

  (   )
  (                )

   ( )   
(       )    ( )    ( )    ( )  (  ( )     

) 

  ̇( )      ( )      ( )    ( )  (  ( )     
)   

  ( )  (  ( )     
) 

    Since the model is inherently affine in the control 

signals u, it can be formulated in the following simpler 

state depend form: 

               ̇( )   ( ( ))   ( )   ( ( ))   ( )     ( 4) 

  [

       
       
       

]    [

    

    
        

] 

 

     
(            ( )        ( ))

  (   )
 

       (   ) 

    
(                )

  (   )
 

    
  (   )    ( )

  (   )
 

      

       

     (  ( )     
) 

     (  ( )     
) 

    Two different optimization criteria were applied, in the 

first criterion the     were chosen to be constant 

diagonal matrices as: 

  [

     
     
     

]    [
    
    

] 

     The costate model and the optimal control equation of 

the current system can be formulated as: 

The costate model   9    ][  ]    : 

             ̇( )      ( )  *
  ( ( )  ( ))

  ( )
+
 

  ( )           

( 5) 

  ̇          (
(                   )

  (   )

   )     

 (
(                   (   )    )

  (   )
)    

       

  ̇          (
(                (   ) )

  (   )

   ) 

    (
    

 
   )     (    )     

  

  ̇               
The Optimal Control Equation: 

          ( )    ( )   *
  ( ( )  ( ))

  ( )
+
 

  ( )                   

( 6) 

  ( )   
 

   

 (  ( )     
)  (  ( )    ( ))  

  ( )   
 

   

 (  ( )     
)  (  ( )    ( )) 
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V. SIMULATION  RESULTS  

    To justify the impact of optimal control, we have used 

different control algorithms to solve the optimality 

system numerically. The simulation which we carried out 

by using the parametric values given in Table  .  The 

exact numerical values of all the parameters of the OCP 

are summarized in Table II. A comparative study 

between the system with controls and without control has 

been presented to realize the positive impact of 

vaccination and treatment in controlling the infectious 

diseases.  

Table 1. Covid- 9 Disease data   9  

  0.47/ (Days. People) 

  0.343 /Days 

µ      7 

       7 

  40 Days 

   80% People 

   20% People 

   0% People 

Table 2. Exact values of the OCP parameters 

 

 

Figure. 2 show the time series of the susceptible (S), 

infected (I) and recovered (R) individuals both with and 

without control. Figure.   represent the optimization 

criterion of applying the ASRE and SNAC techniques.  

Figure . 4 display the optimal control signals of applying 

the ASRE and SNAC techniques along with the no 

control solution.   From the simulation result, we see 

those optimal controls due to vaccination and treatment 

are very effective for reducing the number of susceptible 

and infected individuals and so enhancing the number of 

recovered individuals significantly  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Figure    The optimal states of applying the ASRE and SNAC  

techniques along with the no control solution 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure  . The optimization criterion of applying the ASRE and SNAC 

techniques 

 
 

 

 
 

Parameter Description Value 

  Number of sample 

points 
8   

  Sampling period 0.05 [day] 

   Initial states              

  Control weighing 
matrix 

    (     ) 

  State weighting matrix     (        ) 

   Upper limit on control 

signal 
      

   Lower limit on control 
signal 
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VI. CONCLUSION 

    In this paper, we have analyzed the qualitative 

behavior and optimal control strategy of an SIR model. 

Two control functions (ASRE and SNAC) have been 

used, for vaccinating the susceptible populations and for 

controlling the treatment efforts to the infected 

populations. We have also studied and determined the 

optimal vaccination and treatment to minimize the 

number of infective and susceptible populations as well 

as the cost due to vaccination and treatment. Finally, 

efficiency analysis has been performed to determine that 

the vaccinating to the susceptible populations is better 

than treatment control to infected populations in order to 

minimize the infected individuals.  The entire study of 

this paper is mainly based on the deterministic framework 

and our proposed model is valid for large population. The 

work is a theoretical modelling and it can be further 

justified using experimental results  
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