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Abstract-- This paper presents the Unit Commitment (UC)
and the common constraints that could appear while doing the
UC. Also, Dynamic Programming is introduced briefly with its
advantages and disadvantages. Lagrange Relaxation (LR) is
introduced with its advantages and disadvantage. Finally, a
numerical example of the IEEE model with 36 units and 118
buses are used for unit commitment scheduling within 24
hours.
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Constraints, Spinning Reserve, Lagrange Relaxation, Lagrange
Multipliers.

I. INTRODUCTION

he task of Unit Commitment (UC) involves scheduling

he on/off status, as well as the real power outputs, of
thermal units for use in meeting forecasted demand over a
future short-term (24-168 hour) horizon. The resultant
schedule should minimize the system production cost during
the period while simultaneously satisfying the load demand,
spinning reserve, physical and operational constraints of the
individual unit. Since improved UC schedule may save the
electric utilities millions of dollars per year in production
costs, UC is an important optimization task in the daily
operation planning of modern power systems [1].

Over the past thirty-five years, Lagrangian relaxation
(LR) has become one of the most practical and accepted
approaches to solve for real-sized unit commitment (UC)
problems. LR has also been used in other power engineering
applications, such as hydro-thermal and other scheduling
problems in deregulated systems. The key idea in LR-based
approaches is to append system-wide power and reserve
balance constraints to the objective function with their
corresponding dual variables. The dual to the Lagrangian is
found to have a separable structure [2].
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I. UNIT COMMITMENT (UC)

Varying the loads along the day time and the
weekdays requires the operators to manage their
generation in order to supply the loads economically. The
total load on the system will generally be higher during the
daytime and early evening when industrial loads are high,
lights are on, and so forth, and lower during the late
evening and early morning when most of the population is
asleep. In addition, the use of electric power has a weekly
cycle, the load being lower over weekend days than on
weekdays. Therefore, rather than committing enough units
(turning them on) to supply the maximum demand and
keeping them online all the time. A great deal of money
can be saved by turning units off (de-committing them)
when they are not needed [3].

Therefore, Unit commitment is one of the critical issues
in the economic operation of a power system. It determines
unit generation schedule for minimizing the operating cost
and satisfying the prevailing constraints such as load
balance, system spinning reserve, ramp-rate limits, fuel
constraints, as well as a minimum up and downtime limits
over a set of time periods. With the unit commitment
schedule, generating companies satisfy customer load
demands and maintain transmission flows within their
permissible limits [3].

M. CONSTRAINTS IN UNIT
COMMITMENT

Any optimum unit commitment procedure must produce
a schedule that can be implemented in a real-life system
taking into account a large number of practical systems,
devices, operational and environmental considerations;
generator equality, and inequality.
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Equality constraints mainly described by the power
balance equation, also it’s known as demand constraint [4].

N

> P =P, @

i=1

Where Py is the load demand and N is the number of units
committed at a particular hour.

Inequality constraints are:
e Thermal Unit Constraints:
Thermal units usually require a crew to operate
them, especially when turned on and turned off. A
thermal unit can undergo only gradual temperature
changes, and this translates into a time period of
some hours required to bring the unit on-line. As a
result of such restrictions in the operation of a
thermal plant, various constraints arise, such as [5]:

1. Minimum uptime: once the unit is
running, it should not be turned off
immediately.

2. Minimum downtime: once the unit is de-
committed, there is a minimum time
before it can be recommitted.

3. Crew constraints: The number of units
that can be started at the same time in a
particular plant depends upon the limited
personal (crew) available.

e Unit generation capability limits:
The upper and lower limits of generation of the
units force them to operate within these boundaries
of operation [4].

e Ramp Rate Constraint:
The rate of increasing or decreasing electrical
output from the unit is restricted by the ramp rate
limit [4].

e Transmission Flow Constraints:
For power supplies that have to utilize heavily
loaded lines and transformers located far from
loads, transmission flow limits throughout the
system may become troublesome [3].

e Must Run
Some units are given a must-run status during
certain times of the year for the reason of voltage
support on the transmission network or for such
purposes as a supply of steam for uses outside the
steam plant itself [5].

e Spinning Reserve
Spinning reserve is the term used to describe the
total amount of generation available from all units
synchronized on the system, minus the present load
and losses being supplied. The spinning reserve
must be carried so that the loss of one or more units
does not cause too far a drop-in system frequency.
Quite simply, if one unit is lost, there must be
ample reserve on the other units to make up for the
loss in a specified time period [5].
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e Fuel Constraints

The fuel supply constraints experienced by
utilities are varied. Many utilities have gas
supplies that are limited or which have taken-or-
pay requirements. Other fuels can be limited due
to supply problems, limited storage facilities or
other reasons. Often, fuels will be constrained
over a period much longer than the one-week time
horizon of the unit commitment problem [6].

V. DYNAMIC-PROGRAMMING
SOLUTION

Dynamic programming (DP) has many advantages over
the priority list and enumeration techniques. DP searches
the solution space that consists of the units’ status for an
optimal solution. The search can be carried out in a
forward or backward direction. The time period of the
study horizon is known as the states [4]. The advantage of
DP is the ability to maintain solution feasibility. DP builds
and evaluates the complete “decision tree: to optimize the
problem at hand, thus, it sufQWfers from the course of
dimensionality because the problem size increases rapidly
with the number of generation units to be committed,
which results in unacceptable solution time. To reduce the
dimension, search space and execution time, several
approaches have been developed. The most extensively
used approach is the priority list technique [4].

Suppose we have four units in a system and any
combination of them could serve the (single) load. There
would be a maximum of 2*-1 = 15 combinations to test.
However, if a strict priority order is imposed, there are
only four combinations to try [5]:

Priority 1 unit
Priority 1 unit + Priority 2 unit
Priority 1 unit + Priority 2 unit + Priority 3 unit
Priority 1 unit + Priority 2 unit + Priority 3 unit + Priority
4 unit
e Forward Dynamic Problem Approach:
The forward approach has noticeable advantages
in solving generator unit commitment. For
example, if the start-up cost of a unit is a function
of the time it has been off-line, then a forward
dynamic-program approach is more suitable since
the previous history of the unit can be computed
at each stage. There are other practical reasons for
going forward. The initial conditions are easily
specified and the computations can go forward in
time as long as required [5].
e Problem Formulation
The algorithm to compute the minimum cost in
hour K with a combination I is as the following:

Fcost(K' I) = min[Pcost(Kl |)+Scost(K -l, L: K| I)+ Fcost(K ‘1. L)] (2)
10

Where

F,.(K,1)= least total cost to arrive at state (K, 1)
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P...(K, 1) = production cost for state (K-1, L) to state (K, I)
S, (K—1,L:K,1)= transition cost from state (K-1, L) to
state (K, I)

The flowchart below shows how this algorithm works:
START

—

FCOST (K. I) = MIN {PCOST (K. I) + SCOST (K-1. L: K, )} {L}

DO FOR
— X=ALLSTATESITIN
PERIOD K

KI.;\

‘ {L} ="N" FEASIBLE STATES IN INTERVALK -1

—

FCOST (K, ) = MIN {PCOST (K, T) + L]
SCOST {K-1. L: K. 1} + FCOST {K-1, L}

DO FOR ALL X =

STATES IN PERIOD K

SAVE IN LOWEST COST STRATEGIES |

NO K =M, LAST

HOUR?

TRACE OPTIMAL SCHEDULE

!

CTND

Figure 1. Basic Configuration of the FDP Algorithm

State (K, 1) is the Iy, combination in hour K.
X = number of states to search each period.
N = number of strategies, or paths, to save at each step.

The main disadvantage of the DP is the difficulty of
solving directly the problem when numerous variables
representing operating conditions are involved.

V. LAGRANGE RELAXATION (LR)
METHOD

The approach decomposes the unit commitment problem
into a master problem and makes better and easily
manageable sub-problems to be solved separately. The sub-
problems are linked by Lagrange multipliers that are added
to the master problem to yield a dual problem. The dual
problem has lower dimensions than the primal problem and
easier to solve [4].

The Lagrange multipliers are computed at the master
problem level. Once computed, multipliers are passed to the
sub-problems. The solution of the sub-problem is feedback
to the master problem and updated multipliers are obtained
and used by the sub-problems again. This process is
repeated until the solution converges. For short term UCP,
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the multipliers are updated through a sub-gradient method.
For long term UCP, multipliers are updated with the
variable metric method to prevent the solution near the
dual maximum [4].

The Lagrange relaxation technique has emerged as an
effective method of solving the unit commitment problem.
Compared with approaches, Lagrange relaxation is more
flexible for handling different types of operating
constraints in a power system and has higher
computational efficiency.

The objective functions several constraints and of the
unit commitment problem [5]:

1. Loading constraints:

N
Pkt)ad - z F’itUit =0 fort=1,...... T 3)
i=1
2. Unit limits:

UP™<P'<UP™ fori=1,...,Nandt=1,..T  (4)

3. The objective function is:

iZN:[Fi(F’i‘)+start.up,costiyt]Uit =FP,U/) )

t=1 i=1

We can form the Lagrange function as following:

T N
LU b= F(RLUD+ 24 Py —2 PV O
t=1 i=1

The Lagrange relaxation procedure solves the unit
commitment problem by “relaxing” or temporarily
ignoring the coupling constraints and solving the problem
as if they did not exist. This is done through the dual
optimization procedure as that attempts to reach the
constrained optimum by maximizing the Lagrangian with
respect to the Lagrange multipliers while minimizing with
respect to the other variables in the problem; that is [5]:

q"(4) = maxq(4) )
Where
g(A) =min L (P, U, ») (8)
Rt

This is done in two basic steps [5]:

Step 1 Find a value for each A" which moves q(4) toward
a larger value.

Step 2 Assuming that the A found in step 1 are now
fixed, find the minimum of .Z by adjusting the values of P'
and U*

-

N T T N
Z=) Y [F(P) +start-up,cost, U; + ) AP - ) Y APUL (9)
i=l

t t=1 t=1 i<l

1
[N
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The second term above is constant and can be dropped
(since the I' are fixed). Finally, we write the Lagrange
function as:

L= ZN:(i{[Fi (P') +startup,cost, JU{ - AP'U}) (10)

i=l t=1

Here, we have achieved our goal of separating the units
from one another. The term inside the outer brackets.
Therefore, the problem can be solved separately for each
generating unit, without regard to what is happening on the
other generating units. The minimum of the Lagrangian is
found by solving for the minimum for each generating unit
over all time periods; that is [5]:

N T
ming(4) =) min ) {[F(P")+startup, cost, JU; - APU}  (11)
i=1 t=1
subject to

Uitpimi” < F’it sUitPimaX fort=1,.....,T (12)

e Adjusting A :
First of all, we should obtain an initial condition for
the dual vector A by using a few iterations of a
dynamic programming algorithm. We consider the
Lagrange multiplier to be fixed in each time period
in order to ease the problem. Since A is vector,
each of which must be adjusted and treated
separately [5].

A= +[dd—/1q(/1)]a

(13)

We continue in these iterations until we get very close to
the solution. We determine that using the “relative duality
gap” 1*;_:1* as a measure of closeness.

The flowchart shown below shows the procedure of the
Lagrange relaxation method for solving the unit
commitment problem:
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Pick starting 3t for t=1...... T

r

Build dynamic program having
two states, and T stages and
solve for:

R‘andy; forallt=1....... T

No .
Last unit done

Yes

’ Solve for the dual value q" (1) ‘

v

Using thdJ i‘calculate the primer value 3+,
that’s, solve an economic dispatch for each hour
using the units that have been committed for that hour

Calculate the\]@ljxt&\ge duality gap Relative duality gap sufficiently small
q : v

l Make final adjustments to unit
commitment schedule to
achieve feasibility

!

Done

Update all A'for all t

Figure 2. Basic Configuration of the LR Algorithm [5]

A great advantage of this method is that global system
constraints such as demand-and-supply balance are relaxed
by using Lagrange multipliers, and the problem is divided
into subproblems for each generator. However,
approximate solutions obtained by this method do not
necessarily satisfy every constraint. In addition, when
transmission losses are incorporated into demand-and-
supply balance constraints, direct segmentation into sub-
problems for each generator is no longer possible, which
necessitates additional measures [7].

’ Pick starting 1+ for t=1...... T ‘

»

Build dynamic program having
two states, and T stages and
solve for:

PlandU | forallt=1....... T

l Calculate penalty factor of output G by DC OPF ‘

Is there any correction of power generation plan?
<G =G’>?

No
#Yes

l Solve for the dual value a" (1)

'

Using they calculate the primer value j -
i S
that’s, solve an economic dispatch for each hour
using the units that have been committed for that hour

Calculate lh%m@taue duality gap Relative duality gap sufficiently small

q

¢ Make final adjustments to unit
Update all 2 for all t ‘ commitment schedule to
achieve feasibility

-

Done

Figure 3. Basic Configuration of the LR Algorithm Taking into Account
the Transmission Losses [7]
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VI NUMEICAL EXAMPLE Table 2. Load Rate of Each Bus [7]
bus l rate bus rate bus rate l bus I rate ] bus rate
Units data including the generation cost (a, b and c) 1| oor [ 23 [ ooo2 J[ a7 [ oot || 74 [ oois | 96 [ o007
_ 2 . .. ..
F(P;)) = a + bP;+cP;", the units’ limits, minimum up and 2 | o009 || 27 | ooos || 48 | o009 || 75 | o016 | 97 | o004
down time, initial states and the startup of each unit are 30 oor || 28 | oooa f| a9 | 002 || 76 | oos | 98 | 0005
presented in Table 1. Table 2 presents the load rate of each 4 001 |l 29 | 0009 SO | 0008 || 77 | 0017 J 100 | 0004
unit. 6 | 001 || 31 | ooos || st | oooo | 78 | o026 | 100 | 0005
The unit commitment patterns obtained by Lagrange 7o) 0009 321 000 ST 0008 4 73} 0027 f 102} 0.005
relaxation with and without regard to transmission losses are T 0015 33 0006 f 53 001 ) 80 ] 0001 f 103 10007
presented in Tables 3 and 4, respectively. In the tables, the 121 0008 ff 34 0007 541 002§ 82 ) 0012 § 104 40008
columns represent time, and the rows the generator number 130 00094 35 F 008 S5 f 0026 830013 p 1050009
[7] 14 0.008 36 0.005 56 0023 84 0.017 106 0.007
: . 15 0.007 39 0.01 57 0.019 85 0.026 107 0.01
The numbers (1 and 0) in Table 3 and 4 represent on/off
tat f t tdff t h H 0 t th . t | 16 0.005 40 0.01 58 0.018 86 0.019 108 0.002
Stal ((EjS 0 units at dirrerent hours. Four O represents the Initial I 0.002 at o0l 59 0.02 o8 0018 109 0.002
condition [8]. 18 | ooos || a2 | oot | 6o | oo [ 90 | o029 [f 10| oo
19 | 0007 || 43 | o004 || 62 | o029 || 92 | o004 Jf 112 | 0.007
20 0.007 44 0.004 66 0.021 93 0.004 114 0.002
_ __Table 1. Generator Model [7] _ 2 | oooa | as | oonz || 67 | oots || o4 | ooos || 115 | 0006
Unit Unit characteristic constants Output(MW) MUT | MDT | Initial || Start up
No. a Go'yeh) |b (Go'yenMWH)|c Goyed MWhY  p= | p= || () ™ | state || cost 22 0.004 46 0.01 70 0.015 95 0.003 117 0.01
1 24.389 25.547 0.0253 24 12 1 1 1 0 118 0.02
2 118.91 37.964 0.0156 4 20 1 1 -1 30 -
3 118.46 37977 0.0136 4 20 1 1 -1 30
4 118.91 37.964 0.0116 4 20 1 1 -1 30
5 119.46 38.777 0.0106 4 20 1 1 1 30 H H ieqq 1
= TR = i < = N : . o Table 3. Unit Commitment Pattern (Transmission Losses Disregarded)
7 118.11 37.664 0.0126 4 20 1 1 1 30 [7]
8 81.826 13.507 0.0096 152 76 3 2 3 80 Unit Time (h)
5 1136 13327 0.0088 152 | 76 3 2 3 80 | Mo N1 2 3 4 5 6 7 8 o toffl12 43 14 15 16 17 18 19 20 21 22 23 24]
10 81.208 13.354 0.009 152 76 3 2 3 80 ;‘_ g g g g g g g g ‘0’ l') (') c'> g g g g é é g g g g o0
11 81.626 13.407 0.0093 152 76 3 2 3 80 a 0O 00O0O0COG OGODOOTO OO OO OGO OTG OOOGOTD0OO 0 g E
12 2179 13 0.0062 25 100 4 2 5 100 4 fooooo0oo0o0©0O0O0OOOOOOO0O0O0OO0O0 0 O
13 219.78 18.6 0.006 25 100 4 2 5 100 5 0O 00 O0O0OOOOOOOOOOOOOOOO0OO0O0C O
14 218.34 18.1 0.0061 25 100 4 2 5 100 6 0O 00 O0O0O0OODOO®OOOCOOOUOOOOOOO0O0 0O
15 216.78 18.28 0.0059 25 100 4 2 3 100 ; g g g g g g g g "J ‘I’ ll) CI’ o ll’ ll) ? '|3 ? l: 00000
16 218.78 18.2 0.006 25 100 4 2 -3 100 9 0O 0 0 0 0 0 0 0 1 1 L | : 1 1 1 1 1 : : : : ?
17 216.78 17.28 0.0058 25 | 100 | 4 2 3 100 wlooooo0oo00 01 1 1 1 1 18111 111111
18 218.78 19.2 0.007 25 100 4 2 -3 100 11 o0 0 0O0O0O0OOCTTIT 1T 1 1T ¢+ t &t + 1 1 1 1 1t 1 1A
19 143.03 10.715 0.0047 54.25 155 5 3 200 12 o0 0 0o0O0OOOTT T T ¥ ¥ T T 1T P T 1T 1 1 ¥ O
20 14332 10.737 0.0048 5325 | 155 s 3 5 200 ‘i 0 0.0 g 600000111t 11111111100
I 1436 10.758 0.0045 || 54.25 | 155 s 3 s 200 A FERE A A - U S A S
22 259.13 3 0.0026 68.95 | 197 5 4 4 300 16 lo o coocoo0co00000000O0GOCTIETI1 1 1100
23 259.65 23.1 0.0026 68.95 197 5 4 -4 300 17 0O 0 0 0 0 00 O0O0CO0 1 t ¢+ 1 1 1 1 1t 1t 1 10
24 260.18 23.2 0.0026 68.95 | 197 [ 4 -4 300 :g ? ? (: ? ? g g g ‘lJ ? ? C1l ? C: (: ? Cll : : : : : ? ?
;Z gg?f: ii: ggﬁi: :izz :3: i : 2 300 20 11 111000t 1 t 1t 1 ¥ 1 1 1 1.1 1 1 11
: - - : 4 3 300 20t 1t 000 T L
27 260.08 23.04 0.0026 68.95 | 197 5 4 4 300 22 lo o o 0000000 O0OGGOO0O0O 0O 0TI 1 1 1 100
28 176.06 10.842 0.0015 140 400 8 5 10 500 23 o 00 0O0O0OO0CO0OOOCOOOOCDOOT1TI1T 1 1 1 00
b 177.06 10.862 0.0015 W | a0 | 8 s 10| 500 24 lo 0 0000O0OCO0O0O000O0O0OCOTT 111100
30 176.06 10.662 0.0014 40 | 400 B 5 10 500 ig g g g g g g g g g g g g g g g g g r'] ; {‘, s "] g g
31 177.96 10.962 0.0016 140 400 8 5 10 500
32 310 74921 0.0019 100 | 450 | 8 B 10| 800 i; ? ? ? ? ? ? ? ? (,} ? ? ? ? ',J ? ? ? : : : : -
33 311.91 7.5031 0.002 100 450 3 5 10 800 29 | IR R R I R T A D R s D D D D D N A R A N AN A B |
34 31291 7.5121 0.002 100 450 8 5 10 800 30 LI B N I A I I I T e e e D R DR D B D B N B R |
35 314.9 75321 0.002 100 | 450 3 s 10_| 800 i; : : : : : : : : : : : : : : : : : : : : : : : :
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Table 4. Unit Commitment Pattern (Transmission Losses Included) [7]

Unit Time (h)
| _No 12 13 15 18 17 19 20 21 22 23 24
1
2
3
4
5
6
7
8

@
e . . . 000000 =-=-=-00000000C00D0C00O0CO0 O
N e - RN ). Y- N . Y- N - NN - N -F-F-N-F-F-F-N-F-N-F-N-1 N
e A . . - .~ 00000000~ 00000000000000C00 O
et . . . L . 00000000 ~-0D0000000000000000 0N
ittt w0000 0000-00000000000O000C00 O
e e . . - . 4000000000000 00000000O000CO00 O™
i ettt e w2 = 000000000000 00000000000COD0 O
e 4~ 2~~~ 0000000 —-0000C000000000000000|m
e e e . == 000000=—-—~0000000 == ==000000O0|

L aeiasacoesoasaaaoffeocacaciicccnca-]]

— st s 4 = . 000000~ == O0 =00 == =~ 00 0000~
2 42 2000000 === 000 ——t === 0000Q0 =
-ttt . 4 2~ 000000~ ==0=00 == =====0000000
-t " = 4+~ = 000000 === 0~00=0=====000000O0fF
st 4 2= = 000000~ ==0 =00 =0 =m=="s0000C00
-ttt . " - 000000 == =0=~00=0=====0000C00O0
B e R N = - - A-1-X-E
e 4 L . 00000 dddnd st =200 0000 ==
S = Lk = - e Iy - ¥ - X - ¥ - =1
e - L L L Ry Y X=X - =Y
e - X - - - = R i - ek A== X=X =X =N -1
i e - B - - N = R - R e R - k- =R =R =X -1
- e~ 000000~ =0~ 0000 === ==0000000C
- .’ e . . =~ 000000~ ==00000000=-00C0C000

For the solution shown in Table 3, the number of
Lagrange multiplier updates, the duality gap, and the overall
operating cost were, respectively, 453, 0.8%, and 1219.025
million yen. In Table 4, the number of Lagrange multiplier
updates, the duality gap, and the overall operating cost were,
respectively, 468, 0.4%, and 1222.440 million yen. In
addition, when the UC pattern obtained without regard to
transmission losses was then corrected by using optimal
power flow calculation, a supply deficiency occurred at time
period 11, as marked in black. In other words, conventional
Lagrange relaxation does not assure due allowance for
transmission losses, hence unit commitment cannot be
scheduled optimally. With this time period excluded, the
overall operating cost amounted to 1178.579 million yen.

For the proposed method presented in Table 4, the
number of Lagrange multiplier updates, the duality gap, and
the overall operating cost were, respectively, 468, 0.4%, and
1222.440 million yen [7].

VIlI.  CONCLUSION

This paper gives an introduction to the unit commitment
problem. Most of the important constrain that can affect the
solution of the unit commitment problem are stated and
discussed. Also, the paper introduces two methods through
which the UC problem could be solved (Dynamic
Programming and Lagrange Relaxation), and some
advantages and disadvantages of each method are discussed.
The problem formulation of both methods is presented in
this paper. A comprehensive example is given to solve the
unit commitment problem using Lagrange relaxation. Also,
an improved method of LR is used to account for the
transmission losses.
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