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Dermatology has been transformed through the use of machine learning in health
research. By leveraging large data sets and training deep learning models on diverse
skin lesion images, researchers have opened the door to improving and modernizing
traditional diagnostic methods. This paper aimed to develop a highly effective model for
accurately classifying skin cancer images as benign or malignant, thus contributing to
early detection. The methodology involved utilizing three custom Convolutional Neural
Networks (CNNs) to extract essential features from dermatoscopic images, focusing on
characteristics such as the borders of melanoma. Non-cancerous tumors are typically
smooth and regular in their edges, while malignant ones have an uneven and rough
border. The CNN models were trained on a melanoma dataset comprising images from
both benign and malignant cases. Pre- processing steps such as data augmentation were
also employed to further improve the performance of the model. The performance of
the models was evaluated thoroughly using metrics such as precision, recall, F1 score,
and accuracy. By training the models on Melanoma skin cancer, the models provided
relatively high accuracies on the validations: 91%, 88%, and 94% for the first, second,
and third model, respectively. Additionally, the accuracy for Benign skin cancer is
92%, 89% and 95% for the first, second, and third model, respectively. The third CNN
model achieved the best precision and recall with 93% and 95% for Benign skin
cancer, and 92% and 94% for Melanoma skin cancer. The third CNN model
consistently outperformed the others, offering balanced and superior accuracy in
distinguishing between benign and malignant skin cancer cases.
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l. INTRODUCTION

In recent years, the incidence of skin cancer has risen
significantly, raising global concern. Skin cancer originates
from abnormal cell growth in the skin, and when this
growth becomes uncontrolled, it leads to cancer. Skin
cancer is one of the most common types of cancer
worldwide, mainly due to prolonged radiation from
ultraviolet sunrays [1]. Since skin is the largest organ in
the human body, the trends in skin cancer are not
surprising. Skin cancers are usually classified into three
major types, including melanoma, SCC (squamous cell
carcinoma), and BCC (basal cell carcinoma). Among
these three, melanoma has the highest death rate. It
originates from melanocytes, the melanin-producing skin
cells responsible for skin color. The mortality rate for
melanoma is about 2% when it is in its early stage but
increases exponentially to 38% if disseminated to lymph
nodes and further to 84% with disease progression
beyond this point [2,3]. Given that skin cancer typically
spreads slowly, early-stage detection makes it more
treatable, and melanoma is highly curable if caught early
[4]. However, diagnosing skin cancer remains challenging
and costly, with annual medical expenses associated with
skin cancer increasing by 26.2%, compared to just 25.1%
for other types of cancer [5]. This economic burden makes
the early detection of skin cancer a key area of interest
worldwide.

Recent developments in technology, especially in Al and
computer vision, have introduced new ways of diagnosing
cancer. Al is defined as the process of using computers to
perform intelligent tasks using a minimum of human input
[6]. Among various ML techniques, DNNs have been very
successful in processing large training datasets, which
require huge computational resources, usually performed
by GPUs. Convolutional Neural Networks have gained
wide attention in medical imaging because of their great
capability in handling large datasets and their efficient
usage of resources. Recent years have witnessed significant
competition between deep learning techniques, like CNNSs,
and low-level object representation methods for
applications in image detection [7]. CNNs have emerged as
a powerful aid in medical image analysis, facilitating
precise malignant and benign skin lesion discrimination
through automatic feature extraction and classification.
Deep learning technologies are employed by the models
in the analysis of extensive skin image databases,
enhancing the accuracy of diagnoses and potentially
reducing the workload of dermatologists. The application
of CNNs in dermatology not only enhances the pace of
diagnosis but also early detection, which plays a critical
role in successful treatment outcomes. CNNs' ability to
learn from large amounts of data allows them to identify
small patterns and characteristics, which might be
overlooked by the human eye, leading to more precise
analyses of skin disorders. This healthcare technology
advance is a giant leap towards personalized medicine as it
enables health care professionals to provide evidence-
based practice decisions informed by data-driven facts
[8]. A sequential CNN architecture was employed for
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pre-processing images, discriminating areas of interest,
and detection of features. It achieved 96.25% accuracy on
HAM 10,000 database, which was higher compared to
other models like VGG 19 and ResNet-50 [9]. SkinNetl
and SkinNet2 were introduced, where SkinNet2
combined deep learning with Support Vector Machine
(SVM) for improving accuracy. SkinNet2 achieved 92%
accuracy through a test set [10]. The DenseNet201 model
was enhanced and had a sensitivity of 93.96% and
specificity of 97.03%, which illustrates its accuracy in
distinguishing malignant and benign lesions [11]. A
ResNet50-SVM framework got area under the ROC
curve of 99.52% and accuracy of 99.87% [12]. CNN
models have produced outstanding accuracy in skin
lesion classification. A CNN model trained using 10,000
images achieved 95% accuracy on the test set [13]. A
customized CNN architecture achieved 85% F1-score and
83% ROC- AUC and performed extremely well when
implemented on the ISIC dataset [14]. The VGG16 and
ResNet50 models that use transfer learning were
compared, and VGG16 achieved 87% accuracy and
surpassed other models [15]. Generalization of the model
was improved through techniques such as image resizing,
normalization, and data augmentation. For example, data
augmentation included random flipping and zooming to
increase dataset diversity [16]. Both pre-trained
MobileNetV2 and ResNet50 were fine- tuned to classify
skin lesions, where the accuracy achieved using
MobileNetV2 was 92.97% [17]. The heterogeneity of
skin lesion datasets, particularly for skin colors and lesion
types, remains an issue. Models may vary on datasets
with underrepresented darker skin colors [18]. The CNNs
have shown promising performance in classifying
malignant and benign lesions with high accuracy and
stable performance on varied datasets. Deep learning with
medical imaging can revolutionize dermatological
diagnosis, enabling early detection and better patient
outcomes. Table 1 and 2 illustrate the performance
comparison of CNN models for different studies. Future
research should focus on dataset diversity and model
architecture optimization for even better performance.

TABLE I.  PERFORMANCE COMPARISON OF CNN MODELS

Model Architecture Accuracy (%) Ref
Sequential CNN 96.25 [9]
SkinNet2 92 [10]

Modified
DenseNet201 9330 [t
ResNet50 with SVM 99.87 [12]
VGG16 87 [14]
MobileNetV2 92.97 [17]

Paper ID: 572



IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY,

TABLE Il.  SUMMARY OF MALIGNANT AND BENIGN SKIN RESEARCH
STUDIES
Ref Summary

(9]

The proposed deep sequential CNN model was 96.25%
accurate in classifying the skin lesion as malignant or
benign, outperforming other models like CNN transfer
learning (87.9%) and VGG 19 (86%), indicating
significant improvements in skin lesion classification.

[10]

The study presents two models, SkinNetl and SkinNet2,
using CNN to classify dermoscopy images as melanoma
and benign. SkinNetl uses deep learning
exclusively, and SkinNet2 uses acombination of deep
learning and SVM to classify the images with 90.5% and
92% accuracies, respectively.

[11]

The study uses tailored MobileNetV2 and DenseNet201
models to classify skin lesions into malignant and benign
classes with 95.50% accuracy, 93.96% sensitivity, and
97.03% specificity for detecting skin cancer.

[12]

The study compares various pretrained CNNs like VGG-
16, ResNet50, and InceptionV3 for classification of
malignant melanoma and benign skin lesions with
improved performance utilizing ResNet50 with Support
Vector Machine to gain 99.87% accuracy.

[14]

The study developed a better DNNs for the diagnosis of
skin lesions as benign or malignant with an 84% success
rate using the Adam optimizer, from a dataset of 3,297
dermoscopic images for accurate diagnosis.

[15]

The study constructed convolutional neural network
models VGG16 and VGG19 for the classification of skin
lesions into malignant and benign classes. VGG16
achieved the best accuracy of 87%, outperforming the
custom CNN model in this binary classification.

[16]

The work employs a modified convolutional neural
network (MOCNN) to accurately classify skin lesions as
malignant or benign at 91.62% in a model trained on
10,540 images with the added benefit of data
augmentation for the robustness and generalizability of
the model.

[17]

The study utilizes a CNN model based on MobileNetV2
for classifying malignant and benign skin lesions,
achieving high accuracy of 92.97%, with metrics like
recall (92.71%), precision (94.70%), and F1 score
(93.47%) indicating its effectiveness in skin cancer
diagnosis.

(18]

The study utilizes a CNN model in MobileNetV2 for the
classification of malignant and benign skin lesions with an
accuracy of 92.97% and other indicators like recall
(92.71%), precision (94.70%), and F1 score (93.47%)
indicating its effectiveness for the diagnosis of skin
cancer.

[19]

The article presents a CNN model to identify skin cancer
lesions as malignant or benign with around 92% accuracy
for the training set and over 95% accuracy for the test set,
demonstrating successful early detection.

[20]

The study utilized CNN to distinguish between malignant
and benign skin lesions based on the ISIC2018 dataset.
The CNN model outperformed other transfer learning
models with a 85.8% accuracy, which demonstrated
effective discrimination between lesion types.

The study developed computer models by using pre-
trained convolution neural networks to categorize skin
lesions into benign and malignant. An accuracy of 94%
and 93% was achieved with the model DenseNet121,
while EfficientNet BO categorized nine classes of skin
tumors accurately.

The work employs CNN to differentiate 1497 cancerous
and1800 non-cancerous skin lesions with 92.7%
precision. Balanced dataset and the ResNet50 architecture
enhance the model's accuracy in detecting skin cancer.

The research evaluates a proposed CNN model for lung
cancer image classification with 99.9% to 100% accuracy
in distinguishing between benign and malignant lesions
based on the LC25000 dataset of 10,000 labeled images to
enable automatic effective detection of cancer.

ijeit.misuratau.edu.ly

ISSN 2410-4256

VOL.14, NO. 1, DECEMBER 2025 62

The article explores the application of CNNs in the
classification of malignant melanomasand benign lesions,
[24] |and how they can be used to improve accuracy and
reliability in melanoma detection, leading to better patient
outcomes and treatment effectiveness in clinical practice.
The article proposes a deep CNN for the classification of
breast lesions into malignant and benign with a training
[25] |accuracy of 0.98 and test accuracy of 0.97, significantly
reducing human error in mammography interpretation and
diagnosis.

The study uses a residual network (ResNet-50) as a deep
learning CNN for skin lesion classification and achieves
[26] |over 97% accuracy in the classification of benign to
malignant categories using 320 clinical images for
training.

The study compares the Novel Densely Connected
Convolutional Network CNN in the classification  of
malignant and benign skin lesions with detection rates
of 80.8% and 76.3% respectively, statistical significance
attesting to the superiority of the former's detection
efficacy.

The study uses a one-dimensional convolutional neural
network to separate malignant and benign tumors with
[28] [99.9% classification and 98.8% ROC- AUC.
Experimental data of new tumors should be carried out to
validate the model's performance.

The article presents a skin lesion classification model
based on Efficient Net B7 CNN architecture that achieves
87% accuracy in distinguishing malignant from benign
lesions across eight classes, including Basal Cell
Carcinoma, Squamous Cell Carcinoma, and Melanoma,
from images captured by mobile cameras.

[27]

[29]

In this paper, three CNN models were employed to
extract critical features from dermatoscopic images of
skin lesions, such as the borders of melanoma. Benign
tumors typically have smooth borders, while malignant
tumors exhibit irregular, rough edges. These models were
trained on a common dataset, enabling direct comparison
of their performance in classifying benign and malignant
lesions. The present paper is dedicated to the
development of CNN models for skin cancer detection,
training those models on the Melanoma Skin Cancer
Dataset, and evaluating and comparing their training
accuracy with respect to the chosen dataset.

Il. DATASET AND METHODOLOGY

In this section, Melanoma skin cancer detection system
has been implemented to distinction between Benign and
Malignant skin tumors. The implemented system utilized
three different CNN models with the same dataset as an
input. The flow chart in Fig. 1 summarizes the important
steps and provides a visual representation of the essential
elements and the overall procedure [30, 31].

Training Testing

phase

Data Data

preparation | | splitting | | phase

Figure 1. A flow chart demonstrating the essential steps

A. Data Preparation

The necessary data for this paper were collected from
Kaggle website [32]. Melanoma skin cancer dataset
contains exactly 10602 dermatoscopic images of
pigmented skin lesions which are distributed as 5499
images for Benign tumor and 5103 images for Malignant
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tumor. The images included in the dataset have
dimensions of 300 x 300 and 3 channels due to its color
mode "RGB". Figures 2 and 3 shows samples of the
dataset.

B. Data Splitting

As mentioned before, the dataset consists of 10602
images. The data is categorized in such a way that 10% of
the data is carried in the test data while the other 90% is
carried in the train data. However, the train data itself has
been splitted to obtain 25% to validation as shown in
Table 3 and Fig. 4.

TABLE Ill. THE DISTRIBUTION OF DATA TO BE TRAINED
Class Benign Malignant | Total
Test 499 499 998
Train 3750 3453 7203

Validation 1250 1151 2401
Total 5499 5103 10602

T TR D

Figure 2. Benign samples of the dataset [32]

TR U P W o e Mo e

PO® e e oam e TR

Figure 3. Malignant samples of the dataset [32]
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Separation of dataset
testdata
10%

validation data
2%

train data
68%

Erraindata  ®validationdata  m test data

Figure 4. The distribution of data to be trained

C. Training Phase

In this paper, three different CNN models were used
for training with different structures such as number of
convolution layers, arranging of layers and number of
neurons in the FC layers. All three models are custom
CNN architecture, and no pre-trained models were used.
Figure 5 represents the block diagram of training phase
[33-35].

Figure 5. Block diagram of training phase

Image reading: The implemented system uploaded the
data from a directory dataset. Which was then utilized for
training in the next stages which is executed on Jupiter
notebook via Kaggle website using GPU P100 accelerator
to run the Keras library. The system enhances images and
generates new images for training datasets in order to
produce additional samples before feeding them to the
CNN models. The pre-processing techniques used in the
implemented system are indicated in Figure 6.

4 \ R rid \ 7

Resizing ;.{ Nomalization |, Augmemauoxlr

\ /
Figure 6. A flow chart of data pre-processing

Shuffling |

Image resizing: Prior to the training phase, the images are
adjusted to a fixed size of 224x224 pixels in 'RGB' color
format. This resizing reduces dimensionality and
computational demands, enabling the network to perform
more efficiently with simpler calculations while
maintaining accuracy. Figure 7 illustrates an example of
an input image both before and after the resizing process.
Normalization: The pixel values of the images are
normalized to the range [0, 1] by dividing each pixel
intensity by 255. This standardization is a common
preprocessing technique in neural network training to
ensure consistent input scaling.

Data Augmentation: To train a model with many
trainable  parameters and achieve  competitive
performance a significant volume of images is required.
Image augmentation has been demonstrated to be an
effective and efficient solution to this problem. Data
augmentation is a technique for increasing the number of
images for underrepresented groups without suffering the
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cost of additional image collection. For object recognition
and image categorization, several image augmentation
techniques have been used such as: crop, flip, intensity
changing, translate, elastic distortion, cutout, mix-up and
rotation [36]. For the implemented system, the images
were randomly rotated by up to 20 degrees as shown in
Figure 8. In addition, the images were horizontally
flipped as shown in Figure 9. The augmentation process
adds diversity to the training data and improves the
model's ability to generalize to different object
orientations.

Shuffling: The input data were grouped into batches with
a specified batch size (64) where each batch is trained
individually. The images were shuffled before each epoch
to prevent overfitting and provide randomity.

IIl.  TRAINING PROCESS

In this process, all three custom CNN models were
built and compiled to be trained on the Melanoma skin
cancer dataset. All models are discussed below [37-40].
After building and compiling each model, the models
were saved for future use. Models that have been saved
can be used to make predictions on new data without
needing to be retrained since the learnt weights, biases,
and architecture are preserved.

A. The first model

The first utilized model was a custom CNN sequential
model consisting of two convolution layers each
followed with a max pooling layer and a drop out layer.
Fig. 10 reveals each layer in the first model. The first 2D
convolution layer has 64, kernel size of 3x3, filter to
obtain the convolution operation with the (224x224x3)
input, the activation function used in this layer was
Leaky ReLU to obtain nonlinear operations. 10% of the
neurons in this layer drop out to prevent overfitting.

Figure 8. The effect of image rotation
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o 4 ' ) v R L

Figure 9. The effect of image flipping

conv2d_input l Inputlayer l
conv2d Comv2D
dropout Dropout

v
max_pooling2d Max_Pooling2D
v
conv2d_1 Com2D |
Y
dropout_1 Dropout
v
max_pooling2d 1 Max_Pooling2D
A
flatten Flatten
"
dense Dense
v
dense 1 Dense

Figure 10. Layers in the first model

A max pooling layer is obtained to detect the most
important features. A second 2D convolution is applied
while this layer has 128 filters with the same kernel size
of 3x3. The dropout obtained for this layer was 15% and
followed with another max pooling layer. A flatten layer
is obtained to convert the 2D input to a 1D vector, this
expands the data for the afterwards FC layer. The first FC
layer is considered as an input layer of the FC layer stage
which has 256 neurons. The second FC layer is
considered as the final FC layer that consists of 2 neurons
responsible for the classification, and the used activation
function in this layer was Sigmoid which is suitable for
the binary classification.

B. The second model

The second utilized model was also a custom CNN
sequential model consisting of four similar blocks, where
each block consists of convolution layers with drop out
and max pooling layers varying in the number of filters
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and neurons. Figure 11 reveals each layer in the second
model. This model has four different blocks, where each
block consists of a 2D convolution layer associated with
drop out and a max pooling layer. The first block has 64
filters for the convolution layer each of 3x3 kernel size,
and 10% of the units were dropped out. The second block
has 128 filters with a size of 3x3, 15% of the neurons
were set to 0. For the third block, the convolution layer
has 256 of 3x3 kernels and 20% of the neurons were
randomly selected to be dropped out, reducing the
model's reliance on specific features. The convolution
layer of the fourth block consists of 512 filters each of
3x3 kernel size and 30% of the neurons were dropped out
to prevent overfitting. All previous convolution layers used
Leaky ReLU activation function and followed by a max
pooling layer. A flatten layer follows the last max pooling

| comv2a_2_inpur InputLayer |
| |
| |
| |
I |
| |
I |
| |
layer to convert the 2D input to a 1D vector 1024 neuros [ dropou:_4 Dropout ]
| |
I ]
[ |
I |
| |
| |
I |

conv2d_2 r Conv2D

dropout_2 Dropout

max_ pooling2d 2 Afax_Pooling2D

conv2d_3 Conv2ZD

dropout_3 Dropout

max_pooling2d_3 MNax_Pooling2D

conv2d_4 ConvZD

layer is considered as an input to the FC layer. Followed
by 2 neurons classifier layer with Sigmoid activation
function which is considered as an output of the FC layer.

max_pooling2d_4 Aax_Poolins2D

conv2d_5 Conv2D

C. The third model

The third utilized model was a custom CNN sequential
model which also consists of four convolution layers.
However, these layers are allocated so that every pair of
subsequent layers and a max pooling layer performs a
block. Figure 12 reveals each layer in the third model.
The third model is a sequential model that starts with a
2D convolution layer of 64 filters of 3x3 kernel size and a
padding parameter that sets the output to have the same
spatial dimensions of the input, this layer is followed by
another 2D convolution layer having the same parameters.
Both of the convolution layers use Leaky RelLU
activation function. This pair of convolution layers is

dropout_35 Dropout

max_pooling2d_35 T Max_Pooling2D

flatten_1 Flatten

dense_2 Dense

dense_3 I Dense

Figure 11. Layers in second model

followed by a 3x3 sized max pooling layer which is [ conv2d 6 input InputLayer |
provided to reduce the spatial dimensions of the input. A .
second block consists of the same layers as the previous I conv2d_6 Conv2D ]
block with the same parameters except that the <
convolution layers in the second block have 128 filters | conv2d 7 Conv2D |
for each layer. The output is converted from 2D to 1D
vector in the subsequent stage by applying a flatten layer. | — - — |
Next, a 256-unit input layer that uses the Leaky ReLU memecs teesm e woe et dacs. =
activation function is given to the dense layer (FC layer). v
After that, a drop out layer is introduced with a 50% drop I conv2d_ 8 Conv2D I
out rate. The second dense layer, which is the last FC v
layer has two neurons involved in categorization, was I conv2d 9 Conv2D |
activated using the sigmoid function. 3
I max_pooling2d 7 Max Pooling2D |
v
I flatten 2 Flatten |
v
I dense 4 Dense |
1.7
I dropout_6 Dropout I
y
I dense S Densc I

Figure 12. Layers in the third model
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Testing had to be performed through a set of images that
are distinct from those which were used to train the
model in order to assess the model’s performance.
Testing has been done by loading a random image from
the dataset to serve as an input for the model, to pre-
process the image, it has been resized to the dimensions of
(224,224) to ensure that the image is compatible with the
input size expected by the model, converting it to a
NumPy array which is a common data structure used for
numerical computations in DL, finally a normalization
has been done by dividing the pixels on 255. The required
model has been loaded in order to predict the image's
class.

The predicted skin cancer class is displayed in a
simple manner for the user to understand without
having to examine the specific predictions extensively,
by creating visual representations of the input image
associated with the predicted class and an indication of
which prediction is correct or incorrect. A sample of the
test images were entered into the system and Figures 13,
14, 15, and 16 shows samples of the results of correctly
recognized Malignant cancer, correctly recognized
Benign cancer, incorrectly recognized Malignant cancer
and incorrectly recognized Benign cancer respectively in
the testing phase.

Figure 14. A sample of correctly recognized benign cancer
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"

Figure 15. Samples of the incorrectly recognized malignant cancer

* ‘,‘
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Figure 16. Samples of the incorrectly recognized benign cancer

IV. SIMULATION RESULTS

For Melanoma skin cancer detection, three CNN models
were used to compare the structures and the consisting
neurons in the models with their corresponding
accuracies to classify a dermatoscopic skin lesion of
which is a Benign or Malignant skin cancer. The
performance analysis of the chosen models was provided
and properly covered. The performance evaluation
process has been applied in the same way for all systems.
Table 4 describes the configurations used to evaluate and
compare the performance of the utilized models.

TABLE IV. EVALUATIONS CONFIGURATIONS OF THE MODELS

Loss Function
Optimizer

Categorical Loss Entropy
Adam

Accuracy, Precision, Recall and F1 score

Performance

All three models were modified and then employed to

train on Melanoma skin cancer dataset. The modified
models were trained for only 10 epochs with monitoring
the accuracy and loss of each epoch for the three models
in order to observe the corresponding enhancement in
accuracy of every modification in the system [41-43].
The original system was operating with 64 batch size,
soft max activation function in the classifier layers,
ReLU activation function in the convolution layers.
Table 5 indicates each modification with the
corresponding train accuracy, validation accuracy, train
loss and validation loss of each model after 10 epochs.

It appeared that all the modification in the system
hyperparameters has led to an improvement in
performance for all models, except for reducing the
batch size to 32 where it resulted in reducing the
validation accuracy of the first and second models along
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with a significant increase in the losses of these models.
However, reducing the batch size to 32 positively
affected the third model. Thus, it was not sufficient to
make such a trade-off. As a result, all the modifications
mentioned in the previous table were adopted except for
decreasing the batch size. This paper prepared using
MATLAB [44-48] for data analysis, simulations, and
visualization. All computational results, figures, and
algorithms presented herein were generated using
MATLAB [49-57].

TABLE V. THE IMPROVEMENTS OF THE SYSTEM

Type of Train Train Val Val
modification | Model Accuracy loss Accuracy loss
1 83 0.5 86 04
Original system| 2 62 0.61 59 0.25
3 87 0.29 89 0.69
Convert the 1 87 0.29 84 0.48
activation
functions from 2 63 0.6 61 2.14
soft-max to
sigmoid 3 87 0.29 89 0.25
Convert the 1 89 0.25 88 0.26
activation
functions From 2 88 0.27 87 04
ReLU to
Leaky- ReLU 3 89 0.26 90 0.23
Batch size 2 88 0.25 86 0.44
from64t032 | ;3 90 0.23 90 0.21
Doubling 1 88 0.27 90 0.25
number of 2 88 0.26 82 0.5
neurons in
each layer 3 91 0.22 89 0.26

A. Results of the training phase

The modified DL models were trained for 35 epochs
with monitoring the results of each epoch. This training
process was done using the Melanoma skin cancer
dataset. All three models showed an improvement in the
accuracy of the training data which illustrates the
effectiveness of the DL models that have been utilized.

1. Results of training of the first mode

The first model was trained for 35 epochs, and the final
train accuracy has reached 91.38%. However, the
validation accuracy of the final epoch has reached
90.92%. Figures 17 and 18 indicates a plot of the learning
process for each epoch in terms of accuracy and loss
respectively. The two figures reveal increasing in both
train and validation accuracy curves. Conversely, the
train loss and validation loss curves are decreased
through the learning process. The two figures share the
fact that the train and validation curves are dispersed until
the 11th epoch where the curves intersect. After that the
curves oscillate decreasingly attempting to reach the
steady state. Performance dipped slightly between epochs
22-25 before recovering. However, this obstacle has been
resolved in the following epochs. The first epoch’s train
accuracy, validation accuracy, train loss, and validation
loss were respectively 70.42%, 48.02%, 3.63, and 5.67.
These values were enhanced, giving the final epoch
values to 91.38%, 90.92%, 0.21, and 0.24 respectively.
Figure 19 illustrates the confusion matrix of the first
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model. The first model accurately identified 713
instances of Malignant Melanoma. It correctly classified
438 instances as Benign. However, it misclassified 1219
instances as Malignant when they were actually Benign.
Additionally, the model failed to identify 31 instances of
Malignant tumors.

2. Results of training the second model

The second model was trained for 35 epochs, and the
final train accuracy has reached 92.18%. where the
validation accuracy of the final epoch has reached
88.30%. Figure 20 indicates a plot of the train and
validation accuracy as a function of the training epochs of
the second model. Figure 21 indicates a plot of the train
and validation loss as a function of the training epochs of
the second model. The plot indicates that both accuracy
curves are rising which indicates improvement in the
learning process. It is observed that the accuracy
improvement of the second model through the learning
process is more stable than the first model. where the
curves' disparity is significantly less, either before or after
the 11th epoch. Train accuracy and validation accuracy
for the first epoch were 69.75% and 66.81%,
respectively. After 35 epochs, these percentages resulted
in final epoch wvalues of 92.18% and 88.3%,
respectively. Figure 21 shows the significant disparity
between the train and validation loss curves due to the
oscillation of the validation curve. However, both loss
curves are falling, demonstrating progress in the learning
process. Train loss and validation loss of the initial epoch
were 0.82 and 0.77, respectively. Through the learning
process, these values kept falling to reach 0.19 and 0.52,
respectively in the final epoch. Figure 22 illustrates the
confusion matrix of the second model. The second model
correctly detected 953 cases of Malignant cancers and
198 cases as Benign. In the other hand, 1198 cases were
incorrectly identified as cancer while they were Benign,
and 52 cases of Malighant tumors were missed by the
model by identifying them as Benign.

3. Results of training the third model

The third model was trained for 35 epochs, reaching a
final training accuracy of 92.18% and a validation
accuracy of 88.30% in the last epoch, outperforming all
other models discussed in this paper. Figure 23 display
train and validation accuracy plotted against the training
epochs of the third model. Figure 24 present train and
validation loss over the training epochs of the third
model. similar to the past 2 models, train accuracy and
validation accuracy curves are growing while the train
and validation loss curves are dropping through the
training process. It is noted that the primary epoch's train
accuracy, validation accuracy, train loss, and validation
loss were respectively, 76.76%, 85.92%, 0.48, and 0.35.
These values were improved, resulting in 35th epoch
values of 93.28%, 82.88%, 0.17, and 0.18, respectively.

These results reflect that the learning progress of this
model is the slowest among the utilized models. Despite
this, it produces the best final outcomes. The most
notable aspect of the third model train and validation
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curves is the stable slow improvement in both accuracy ;
and loss performance, exhibiting a remarkable level of o : =
semi-identicality, which implies that the model is
effectively capturing patterns and relationships in the
training data without overfitting or excessively
memorizing specific examples. Figure 25 illustrates the
confusion matrix of the third model. The third model .
accurately identified 1022 instances of Malignant S

Melanoma. It correctly classified 129 instances as " v ; z 2 :
Benign. However, it misclassified 1180 instances as Figure 20. Accuracy curves as a function of training epochs for the
Malignant when they were actually Benign. Finally, the second model

model failed to identify 70 instances of Malignant

tumors.
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Figure. 24. Loss curves as a’function of training epochs for
the third model
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B. Comparison between all models
After training all
saving all models.

Table 6 shows an

precision, recall and f1 score.

TABLE VI. OVERALL COMPARISON BETWEEN ALL MODELS

models for 35 epochs and
overall
comparison between the models in terms of accuracy,

- . Second Third
Metric Class First model model model
Accurac Benign 92% 89% 95%
y Malignant 91% 88% 94%
Benign 89% 83% 93%
Precision
Malignant 93% 97% 92%
Benign 94% 93% 95%
Recall
Malignant 87% 78% 94%
Benign 91.43% 87.71% 93.8%
F1-score
Malignant 89.9% 86.47% 93.01%

Overall, the first model has a better balance between TPs
and TNs indicating a more balanced performance. The
second model shows improvement in identifying
Malignant cases but has a higher rate of FNs. The third
model has the highest TPs but also exhibits a higher rate
of FNs and misclassifying Benign cases. All three
models show relatively high performance for all metrics.
for accuracy metric, the third model performs the best,
followed by the first model, and then the second model.
In the Benign class, the third model attains the highest
precision indicating its effectiveness in precisely
determining Benign instances. On the other hand, the
second model exhibits a higher precision for the
Malignant class reflecting its higher effectiveness in
identifying Malignant cases. In the Benign class, the
second model attains the highest recall, with equality in
the recall performance of the first and third models.
Nevertheless, in the Malignant class, the third model has
the highest recall, and the second model obtains the
lowest performance. For both classes, the third model
obtains the highest Fl-score, revealing a strong
balance between recall and precision. Additionally, by
taking the average results of both classes, the third model
achieves the highest results for all metrics making the
third model is the superior model in this paper.
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Table 7 highlights key differences between our CNN

model’s performance and prior studies in skin lesion

classification.

The paper demonstrates strong performance (94-95%

accuracy) in line with contemporary CNN-based

approaches, though it does not surpass hybrid or

pretrained models like ResNet50+SVM. Future work

could:

- Incorporate pretrained models (e.g., EfficientNet
[29]) or ensemble methods (CNN+SVM [10]).

- Expand dataset diversity to address biases noted in
[18].

TABLE VII. COMPARISON WITH OTHER STUDIES
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For clinical applications, the model’s balanced
precision/recall makes it a viable tool for early melanoma
detection, complementing (but not replacing)
dermatologist assessments. Direct comparison is
challenging due to varying datasets/evaluation metrics,
but the study’s methodology and results hold significant
value in the Al dermatology landscape.

Table 8 display the comparison of structure of three
models to underscores the importance of architectural
choices in medical image analysis, where model
interpretability and reliability are as crucial as raw
accuracy.

VIII. OVERALL COMPARISON BETWEEN ALL MODELS

Feature Model 1 Model 2 Model 3
Architectur
o 2 Conv 4 Conv blocks 4 C_onv blocks
blocks (paired layers)
Conv 2 42(:;';125’ 4 (64—128
Layers | (64, 128 filters) filters) filters, paired)
0, 0,
Dropout | 005 (1t layer), | 10% 15%: | 5004 (final Fc
Rates 15% (2nd) 20%, 30% layer)
(per block)
Poolin MaxPool after | MaxPool after | MaxPool after
9 each conv each conv paired conv
FC Layers 256 — 2 1024 — 2 256 — 2
neurons neurons neurons
Leaky ReLU Leaky ReLU Leaky ReLU
Activation | (Conv), Sigmoid (Conv), (Conv),
(FC) Sigmoid (FC) | Sigmoid (FC)
Best 91% 88% 94%
Accuracy | (Malignant), (Malignant), (Malignant),
92% (Benign) | 89% (Benign) | 95% (Benign)
Key Balanced I_-||_gh f Best overall
Strength | precision/recall precision for performance
malignant
High benign
S b L oL Lower recall Slowest
Limitation mISC|aSS;IfICBtI0n for malignant convergence

The third model’s architectural innovations—paired
convolutions, strategic dropout, and balanced depth—
demonstrate  that thoughtful ~ design  choices can
outperform deeper or more complex networks. These
insights pave the way for more efficient, reliable, and
deployable CNN modelsin dermatology and other
medical imaging applications, ultimately bridging the gap
between Al research and clinical utility.
1. Layer Configuration and Depth
e The third model uses four convolutional
layers arranged in two sequential
convolution blocks, where each block has
two conv layers followed by a pooling
layer.
e This structure enables better hierarchical
feature extraction:
»  The first conv layer captures basic
features like edges or textures.
* The second refines or combines
them into more abstract patterns
relevant to melanoma (e.g.,
irregular borders, pigmentation).
e Compared to the first model’s shallow two-
layer structure and second model’s single-
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layer-per-block design, this deeper and
denser setup in the third model helps it learn
more complex and high-level features.

2. Use of Leaky RELU
e All models use Leaky RelLU, but the third
model benefits more because it:
* Prevents neuron  deactivation
(dying ReLU problem).
»  Enhances gradient flow, especially
in deeper networks.
3. High Dropout Rate in FC Layer (50%)

e The third model includes a 50% dropout
layer before the final dense layer.

e This is much higher than the 10—
30% used in the other models.

« It strongly regularizes the model,
reducing overfitting and
improving generalization.

e Dropout at this stage helps the network
avoid reliance on a specific subset of
features, which is important in noisy and
diverse medical image data.

4. Spatial Preservation via ‘Same" Padding

e The model uses 'same' padding in the

initial  convolutional layers, which

maintains spatial resolution.

e This ensures more granular
feature maps early in the
network—important for

recognizing small, detailed lesion
features like jagged edges or
uneven textures.
5. Stable Learning Behavior
e As noted in the paper, the third model
showed slow but steady learning curves
and minimal overfitting between train
and validation sets.
e This indicates a well-balanced
bias-variance tradeoff, essential
for high test-time accuracy.

V. CONCLUSION

Among all cancers, melanoma skin cancer is one of the
most dangerous that has caused the largest number of
deaths. However, skin cancer is more treatable in the
early stages because it spreads gradually. Diagnosis of
skin cancer is a very challenging and costly process,
which gives extra importance to the development of an
alternative method for early diagnosis. The goal of this
paper is to develop an effective DL model for early
diagnosis of Melanoma skin cancer using CNN models
through Keras Sequential API. Three different CNN
models were developed for classifying Benign and
Malignant skin cancer. A total of 10602 dermatoscopic
images were used in this study, and the dataset has been
split into 90-10 for train and test. Further division of the
train set into 25% validation was made. Several data
augmentations were created. By training the models on
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the Melanoma skin cancer dataset for 35 epochs, the
models provided relatively high accuracies on the
validations: 91%, 88%, and 94% for the first, second,
and third model, respectively. This is inclusive of the
graph on loss and accuracy, confusion matrix, and
wrong predictions. Besides that, precision, recall, and F1
score metrics were computed. Overall, the third model
was the best of all models used. While the 35-epoch
limit provided a standardized comparison, adopting

early

could enhance efficiency and

stopping

generalization. Future iterations of this work should
integrate adaptive training protocols to optimize
performance without arbitrary epoch constraints.

[10]

[11]

ijeit.misuratau.edu.ly

VI. FUTURE WORK

Further investigations are required to evaluate this
work in classifying skin cancer. Additionally,
acquiring a larger, more diverse collection of high-
resolution dermatoscopic images of skin lesions can
enhance the system’s ability to generalize and
remain robust.

For future improvements other pretrained models
can be used to enhance the accuracy of the systems.
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