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Abstract— Controlling a quadcopter is inherently 

challenging due to its nonlinear dynamics and susceptibility 

to external disturbances such as wind gusts and sensor 

noise. This paper explores the use of Model Predictive 

Control (MPC) to tackle these challenges. The goal is to 

create a robust control system capable of stabilizing and 

directing a quadcopter along a specified trajectory, even 

when faced with disturbances. The next step derives 

the Linear Quadratic Regulator (LQR), which is used to 

stabilize the quadcopter. The research involves creating a 

detailed mathematical model of the quadcopter's dynamics, 

followed by the design and implementation of LQR and 

MPC. Through extensive simulations, the effectiveness of 

the MPC approach is validated, demonstrating its ability to 

maintain stability and achieve precise control under various 

conditions. This study underscores the potential of MPC as 

a powerful control strategy for UAVs, offering significant 

advantages for real-world applications where traditional 

control methods may fall short. The LQR controller 

balances the performance of the drone and the energy it 

consumes by specifying the weighting matrix of 

performance cost Q and control cost R to calculate an 

optimized controller. MPC provides a robust and effective 

control strategy for quadcopters, offering improved 

performance and reliability. Its ability to handle nonlinear 

dynamics, manage constraints, and optimize control actions 

makes it an essential tool for advanced aerial vehicle 

control.  
 

Index Terms— MPC, LQR, Tracking control, UAV, Cost 

function. 

I. INTRODUCTION 

uadcopters, a type of unmanned aerial vehicle 

(UAV), have gained significant popularity due to 

their versatility, agility, and wide range of applications, 

from recreational use to complex industrial tasks [1]. 

Their ability to hover, take off, and land vertically makes 

them particularly useful in environments where fixed-

wing aircraft may not be practical. The quadcopter's 

flight dynamics are characterized by non-linearities and 

time-varying parameters, which pose significant  
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challenges for control systems [2]. The quadrotor features 

a straightforward geometric design comprising four 

rotorsmounted on a rigid frame, with each rotor 

controlled independently. This mechanical simplicity 

makes quadrotors appealing for various applications. 

Unlike other aircraft types, quadrotors lack flapping 

hinges, and their rotor blades are short and robust. In the 

quadrotor configuration shown in Figure 1, the rotors are 

positioned so that rotors 1 and 3, as well as rotors 2 and 4, 

rotate in opposite pitch directions. When viewed from 

above, the rotation directions for omega 1 and omega 3 

are positive in the clockwise direction. Conversely, when 

viewed from below, omega 2 and omega 4 also rotate 

positively in the clockwise direction. 

 
 Figure 1. Quadcopter Configuration with rotors Directions [3] 

Traditional control methods often fall short in adapting to 

these variations, leading to suboptimal performance. In 

contrast, Quadcopters operate with six DOF, 

encompassing three translational axes (x, y, z) and three 

rotational axes (roll, pitch, yaw) [3]. Managing this 

complex control challenge requires sophisticated 

strategies to address the inherent nonlinear dynamics and 

coupling between different axes of motion. These 

dynamics are typically modeled using nonlinear 

equations that account for thrust generation, aerodynamic 

forces, and the vehicle's rotational behavior. While 

linearizing these models around specific operating points, 

such as hovering, can simplify control design, real-world 

variability and uncertainties necessitate robust control 

techniques to maintain performance and stability [4].  

Q 
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Various types of controllers have been discussed in 

existing literature. PID controllers are often preferred for 

their simplicity and satisfactory performance [5,6]. 

However, they may struggle with complex trajectories 

that feature considerable curvature. This paper adopts a 

methodology akin to that of, combining the differential 

flatness property of quadcopters with feedforward 

linearization, a technique referred to as flatness model 

predictive control (FMPC) [7,8]. 

 MPC has emerged as a pivotal strategy in the 

stabilization and trajectory tracking of quadcopters, 

addressing the complexities inherent in their dynamic 

flight behavior [9]. MPC offers a robust framework that 

predicts future states of the system based on a 

mathematical model, allowing for proactive adjustments 

to control inputs. This capability not only enhances 

stability but also facilitates complex maneuvering 

essential for tasks such as aerial inspections or search-

and-rescue operations. This paper delves into the 

application of MPC techniques tailored for quadcopter 

systems, emphasizing their ability to manage constraints 

and optimize performance in real-time scenarios. 

Furthermore, this paper outlines the formulation of an 

MPC controller that incorporates feedback mechanisms 

to improve trajectory tracking accuracy. Through 

simulations and experimental validations, we demonstrate 

the effectiveness of MPC in achieving desired flight paths 

while adapting to real-time disturbances. The objectives 

of the paper are developing a develop an MPC algorithm 

to control the quadcopter's position and orientation and 

optimize the performance of the MPC controller to 

minimize error and energy consumption while ensuring 

stability and robustness [10]. Table I summarize the top 

papers for the MPC based quadcopter system. 

TABLE I. SUMMARIZE THE NEW PAPERS FOR MPC 

Paper Insights 

[11] 

The paper does not specifically address MPC for stabilizing 

quadcopter flight. Instead, it focuses on dynamic feedback 
design using piecewise linear feedback with saturation, 

enhancing robustness in tracking systems under velocity 

and control constraints. 

[12] 

The paper does not discuss MPC; instead, it focuses on an 

event-driven mechanism for altitude and attitude tracking in 

quadrotors, utilizing a Terminal Sliding Mode Control 
approach to handle uncertainties and actuator saturation 

effectively. 

[13] 

MPC enhances quadrotor stability and trajectory tracking. It 

effectively manages dynamic environments, adapting to 

disturbances while ensuring precise flight paths, making it 
suitable for complex applications like urban navigation. 

[14] 

The paper does not discuss MPC for stabilizing quadcopter 

flight or following trajectories. Instead, it focuses on two 

control strategies ensuring robust trajectory tracking despite 
uncertainties and disturbances, achieving global finite-time 

convergence of tracking errors. 

[15] 

The paper presents a model predictive control (MPC) 

strategy for quadcopters, ensuring uniform almost global 
asymptotic stability while effectively tracking fast 

trajectories. It combines an outer loop for acceleration 

reference generation with a nonlinear inner loop for attitude 
control. 

[16] 

The paper presents an improved Model Predictive Path 

Integral (MPPI) controller for quadcopter trajectory 

tracking. It integrates a Multilayer Perceptron neural 
network to adaptively adjust control inputs, significantly 

reducing trajectory tracking errors. 

[17] 

The paper does not discuss Model Predictive Control 
(MPC) for stabilizing quadcopter flight or trajectory 

following. Instead, it focuses on an observer-based adaptive 
neural control framework using a high-gain disturbance 

observer and neural-network-based adaptive fractional 

sliding mode control. 

[18] 

MPC is utilized in the outer loop of the proposed control 
architecture to stabilize quadrotor flight and ensure accurate 

trajectory tracking, effectively managing variations in mass, 

center of gravity, and external disturbances during 
operation. 

[19] 

The paper focuses on Sliding Mode Control (SMC) for 
quadcopter trajectory tracking and stability under 

disturbances, rather than MPC. It demonstrates SMC's 

effectiveness through simulations, contrasting it with PID 

control in disturbance scenarios. 

[20] 

The paper does not discuss MPC for stabilizing quadcopter 

flight or following trajectories. Instead, it focuses on a 
hybrid controller (PFOIDSMCBS) designed for trajectory 

tracking under disturbances, demonstrating superior 

performance compared to existing methods. 

[21] 

The paper does not discuss MPC for stabilizing quadcopter 

flight or trajectory following. It focuses on linear PID, 
nonlinear geometric tracking, and robust Sliding Mode 

Control techniques for enhancing trajectory tracking in 

autonomous multirotor robots. 

[22] 

The paper does not discuss MPC; it focuses on Super 

Twisting Sliding Mode Control with a novel Fuzzy PID 

Surface for trajectory tracking of quadrotors, enhancing 
robustness against disturbances and improving tracking 

performance compared to other control methods. 

[23] 

MPC effectively stabilizes quadcopter flight and follows 

trajectories by addressing sensor issues, input and state 
constraints, and adapting to disturbances, as demonstrated 

through LMPC and NMPC frameworks. 

[24] 

The paper does not discuss MPC; instead, it focuses on 

adaptive sliding mode control for trajectory tracking of 

quadrotors, addressing input saturation and disturbances 
through an innovative control strategy that enhances 

robustness and adaptability. 

[25] 

The paper integrates MPC with an Extended State Observer 

(ESO) to stabilize quadcopter flight and ensure precise 
trajectory tracking by addressing external disturbances and 

internal uncertainties, enhancing flight coordination in 

complex environments. 

[26] 

The paper does not discuss MPC for stabilizing quadcopter 

flight or following trajectories. Instead, it focuses on a 

hybrid control strategy combining bioinspired backstepping 

and sliding mode control to enhance trajectory tracking and 

stability. 

[27] 

The paper employs an adaptive MPC algorithm to stabilize 
quadcopter flight and predict trajectories. Experimental 

validation with the Parrot Bebop 2 demonstrates effective 

trajectory tracking and stable autonomous navigation, 
meeting real-time operational requirements. 

[28] 

The paper does not specifically address MPC for stabilizing 

quadcopter flight or following trajectories. Instead, it 

focuses on a Type-2 Fuzzy Logic Controller with Genetic 
Algorithm tuning for robust trajectory tracking in windy 

environments. 

[29] 

The paper focuses on trajectory tracking using 

reinforcement learning and PD control, not MPC. It 
emphasizes achieving optimal trajectory following under 

noise conditions, utilizing simulations for position and 

attitude control of the quadcopter. 
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[30] 

The paper does not specifically address MPC for stabilizing 

quadcopter flight or following trajectories. Instead, it 

focuses on adaptive optimization control using 
backstepping, neural networks for uncertainty estimation, 

and reinforcement learning for optimal problem-solving in 

UAV tracking control. 

II. CONFIGURATION AND 

MATHEMATICAL MODEL OF 

QUADCOPTER  

With two booms crossing in the middle and propellers 

symmetrically positioned at the extremities of four arms, 

quadcopters use four propellers to provide thrust. The 

autopilot and other equipment are located in the center of 

the fuselage [31]. 

Cross Configuration: As seen in Figure 1, this 

configuration can be separated into two types: X and plus 

(+). Because additional rotors help control pitch and roll 

and because their forward field of view is less obstructed 

than that of plus-configuration quadcopters, X-

configuration quadcopters are more maneuverable and 

therefore more popular. 

 

Ring Configuration: The ring configuration offers a more 

rigid structure than the traditional cross fuselage, which 

helps reduce vibrations from the motors and propellers. 

However, this design results in a heavier fuselage, 

potentially reducing maneuverability. 

 

In quadcopter dynamics and control, reference frames are 

essential for describing the motion of the vehicle. Two 

primary frames of reference are commonly used:  

the Terrestrial Coordinate System and the body or inertial 

frame [12].  

 

 
 

Figure 1. Plus and cross quadcopter 

 

Terrestrial Coordinate System: The Terrestrial Coordinate 

System, or Earth frame, is a Cartesian reference frame 

used for describing positions and motions relative to the 

Earth. This frame is particularly useful for determining 

the global position of the quadcopter. The Earth frame 

consists of orthogonal x, y, and z axes [3,32]. 

x-axis: Typically represents the forward direction in the 

horizontal plane. 

y-axis: Represents the lateral direction in the horizontal 

plane. 

z-axis: Points upwards, perpendicular to the Earth's 

surface. 

Body or Inertial Frame: The Body or Inertial Frame is a 

reference frame attached to the quadcopter itself. This 

frame moves with the quadcopter and provides a local 

perspective on its orientation and dynamics. 

The relationship between the Earth frame and the Body 

frame is central to quadcopter control. The quadcopter's 

position and orientation are typically expressed in the 

Earth frame, while the forces and torques applied by the 

rotors are more conveniently described in the Body 

frame.  

To convert between these frames, rotation matrices or 

quaternions are used. For example, the orientation of the 

quadcopter relative to the Earth frame can be described 

using Euler angles (roll, pitch, yaw) and transformed into 

a rotation matrix. This matrix can then be used to convert 

velocity, force, and acceleration vectors between the two 

frames [33,34]. 

The origin of the Body frame, denoted as Oβ, coincides 

with the quadcopter's center of gravity (CG). The axes of 

the Body frame are aligned with the quadcopter's 

principal axes. 

x-axis: Points forward along the quadcopter's nose. 

y-axis: Points to the right of the quadcopter. 

z-axis: Points downward through the center of gravity, 

perpendicular to the quadcopter's plane. 

 

In quadcopter dynamics, Euler angles describe the 

orientation of the quadcopter relative to a fixed reference 

frame. The three basic rotations, known as φ, θ, and ψ, 

correspond to rotations around the x, y, and z axes of the 

quadcopter's body-fixed frame [35,36]. 

Rotation Around the x-axis (Roll, φ):   This rotation tilts 

the quadcopter left or right. The corresponding rotation 

matrix      is: 

                   
  [

    
             
            

]    (1) 

Rotation Around the y-axis (Pitch, θ):  This rotation tilts 

the quadcopter forward or backward. The corresponding 

rotation matrix    θ) is: 

                     
  [

              
     

           
]                     (2) 

Rotation Around the z-axis (Yaw, ψ): This rotation turns 

the quadcopter left or right around its vertical axis. The 

corresponding rotation matrix   (ψ) is: 

                         
  [

    
             
            

]                 

(3) 

To transform coordinates from the inertial (Earth) frame 

to the body-fixed frame, we apply these rotations in 

sequence: yaw (ψ), then pitch (θ), and finally roll (φ). 

The combined transformation matrix                      

is the product of these individual rotations: 

                        =      .                        (4) 

Given that the inertial frame can be perceived as rotating 

in the opposite direction from the body-fixed frame's 

perspective, the inverse of this transformation matrix is 

applied when converting from the inertial frame to the 

body-fixed frame [37]: 
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                 =  

                 
                                          . 

                        (5) 

This transformation allows us to express vectors in the 

inertial frame as coordinates in the body-fixed frame and 

vice versa, making it possible to analyze and control the 

quadcopter's motion in either reference frame. The 

complete transformation matrix is: 

  
  [

                                          
                                                  
                  

]   (6) 

The angular rate in the body frame is given by     
   [            

  

These components describe the rotation rates around the 

body axes. 

To analyze or control the motion of the system with 

respect to a fixed (inertial) reference frame, we need to 

transform the angular velocity components from the body 

frame to the Earth (inertial) frame. This transformation 

involves using Euler angles to rotate the body-fixed 

frame with respect to the Earth frame [38]. 

After rotating around each axis, the angular velocity in 

the body frame is expressed as: 

            ̇     ̇     ̇                     (7)           

This equation states that the angular velocity is a 

combination of the rates of change of the Euler angles 

multiplied by unit vectors in the respective directions of 

the rotations. Specifically [39]: 

 -  ̇    represents the rotation about the yaw axis, 

 -  ̇    represents the rotation about the pitch axis, 

 -  ̇    represents the rotation about the roll axis. 

The rotation matrices that relate the different frames are 

given by: 

                        
            

                           (8) 

These matrices define how to rotate from one frame to 

another: 

  
  is the rotation matrix for the roll angle ϕ. 

   
   is the combined rotation matrix for both pitch θ and 

roll ϕ. 

 By substituting the rotation matrices into the angular 

velocity equation, we get:                         

                  ̇              ̇        ̇       (9)                        

We introduce the body rates p, q, r, which are the 

components of angular velocity in the body frame: 

                       [                                     (10)                                                

Therefore, the relationship between the Euler angles' rates 

of change and the body rates is given by: 

              [
 
 
 
] =[

         
                  
                   

] [

 ̇

 ̇
 ̇

]          (11)                              

This matrix equation expresses the body rates in terms of 

the rates of change of the Euler angles. Finally, we 

express the angular velocity vector in terms of a rate 

matrix W and the Euler angle rates [40]: 

                                     [

 ̇

 ̇
 ̇

] =W.                              (12) 

The matrix W is a function of the Euler angles and 

describes how the angular velocity components relate to 

the Euler angle rates. The matrix W is given by: 

    =[
 
 
 

] ,    =[

                       
              
                         

] 

This matrix helps convert angular velocities to body rates 

and is essential in the control and simulation of the 

quadcopter's motion as shown in Figure 2. 

 
Figure 2.  Modelling quadcopter's dynamics 

 

For rotational motion, torque    is defined by the time 

derivative of angular momentum L. 

                                 
  

  
 

 

  
                                  

(13) 

Where: 

- J is the inertia tensor of the multi-copter. 

- ω is the angular velocity. 

Assuming a symmetric mass distribution, J simplifies to:       

J = [

    
    

    

]                             

The angular dynamics equation becomes: 

             =J  ̇ +ω×(J ω)                           (14) 

Expanding this for each axis: 

                              (     )  +    ̇  

                  ̇ 

    (     )       ̇ 

To model the quadcopter's translational motion based 

translational kinematics: 

- Let   [     ]
 
  represent the position of the multi-

copter in the Earth's frame. The time derivative of 

position  ̇  
- In the body frame:  ̇    

    , where   
  is the rotation 

matrix from the Earth frame to the body frame. 

The control effectiveness matrix relates the thrust and 

moments generated by the propellers to the forces and 

torques applied to the quadcopter. The control 

effectiveness matrix for a "plus" configuration 

quadcopter is given by [15, 41]: 

        [

 
  

  

  

]=[

        

         

         
          

]=

[
 
 
 
 
  

 

  
 

  
 

  
 ]
 
 
 
 

         (15)       

This matrix expresses how the propeller speeds ωi 

contribute to the overall thrust and moments acting on the 

quadcopter, allowing for control and stabilization of the 

vehicle's flight.  

The nonlinear model describes the quadcopter's dynamics 

by gathering the system's states. These states interact 

based on the rigid dynamics and kinematics model, 

represented by matrix equations [21]. 



IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY, VOL.13, NO. 2, Jun 2025                                                                              18 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                             Paper ID: EN192 

To simplify the nonlinear model, linearization around an 

equilibrium point, specifically the hovering point, is 

performed. The equilibrium point   ,    is defined as: 

 

   [                                  [           

m is the mass and g is the gravitational constant. 

These points are used in Taylor series expansion to 

linearize the nonlinear model. The higher-order terms in 

Taylor's series are neglected for small changes around the 

equilibrium point, leading to a linear state-space model. 

The linear state-space model is then obtained by rewriting 

the nonlinear equations into a linear form [22]:  

 ̇               
 

  
         |

  
     
    

    ⃗        

          
 

  
       |

  
     
    

   ⃗⃗                                (16)            

At higher order Terms can be neglected for small change 

around equilibrium point yields linear state space model.  

The matrices A and B are the Jacobian matrices 

calculated using partial derivatives: 

 

    
  

  
   
  

 

[
 
 
 
   

   
   

        
 
    

   

   
   

        
 
   

   
   

   
   

        
 
    

   

   
   

        
 
   ]

 
 
 

            (17)                                                                                                                    

    
  

  
   
  

 

    

[
 
 
 
   

   
   

        
 
   

   

   
   

        
 
  

   
   

   
   

        
 
   

   

   
   

        
 
   ]

 
 
 

        (18) 

Finally, the nonzero partial derivatives are only 

considered to simplify the model, leading to the matrices 

A and B. 

III.LINEAR QUADRATIC REGULATOR 

CONTROL 

Optimal control involves the process of determining 

suitable control signals for a system, taking into 

consideration physical constraints and optimizing a cost or 

performance measure. The primary objective of this 

approach is to solve an optimization problem that guides 

the system's state (x(t)) towards a desired trajectory (x(t)d), 

while simultaneously minimizing costs and efficiently 

utilizing control inputs (actuators). To accomplish this 

objective, several key factors need to be addressed [3,42]: 

Development of a precise model that accurately describes 

the behavior of the dynamic system under control. 

Definition of a cost function (J) that incorporates the 

specific requirements and specifications outlined by the 

designer. 

Consider a dynamic system where the state is represented 

by x and the input is represented by u: 

                             ̇                                              
(19) 

The cost function defines as,  

      [ (  )]   ∫               
  
  

            (20) 

The boundary conditions are as follows: 

 x(  ) =   . 

 x(   ) is unconstrained, and tf can take any value. 

Based on this, an optimization problem can be defined to 

find the solution: 

              [      ]                              (21) 

The objective of the optimization problem is to minimize 

the cost index J. As the time interval approaches infinity, 

the system and cost index can be expressed as follows 

[43]: 

                 ̇                         

Where A is a system matrix, B is an input matrix and C is 

output matrix. 

  ∫ {                                        
 

  

                 }                                                             (22) 

R and Q are matrices representing the costs associated 

with the control inputs and system state, respectively.  It 

has been shown that the control input u(t) that minimizes 

the cost functional is a state linear feedback, which can be 

expressed as: 

  u(t) = -K . [x(t) - xd(t)]                           (23) 

              
The positive definite matrix S is a solution to the algebraic 

Riccati equation [44]. 

                                         (24) 

IV.MODEL PREDICTIVE CONTROL (MPC) 

   MPC is a sophisticated control approach that has 

become well-known for its ability to effectively manage 

dynamic, complex systems while staying within 

restrictions. The fundamental idea behind MPC is using a 

model to predict how a system will behave in the future 

so that control actions can be optimized based on these 

predictions. 

This approach enables the handling of various operational 

challenges, making it suitable for a wide range of 

applications [15]. This approach is characterized by 

solving an optimization problem at each control step, 

where the objective is to minimize a predefined cost 

function over a future time horizon while adhering to 

system constraints.  

Continuous real-time optimization of a mathematical 

model of the system is the foundation of MPC. By using 

this model, MPC predicts how the system will behave in 

the future, which helps the optimization process 

determine the best course for the controlled variable u 

(see Fig. 3). As a result, MPC offers an intuitive way to 

parameterize by fine-tuning the process model, although 

this involves greater computational demands compared to 

traditional controllers [45]. 

 

 

Figure 3. Simplified block diagram of MPC-based control loop 
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At every time step, MPC determines the optimal control 

inputs by solving an optimization problem designed to 

minimize a cost function. This function usually consists 

of components related to tracking errors and control 

efforts. Additionally, the problem includes constraints on 

system states and control inputs, ensuring that the control 

actions stay within acceptable boundaries. The calculated 

control inputs are applied to the system, but only the first 

input from the optimized sequence is implemented; this 

process is then repeated at the subsequent time step using 

updated state information [46]. 

It uses the current state to solve an optimal control 

problem over a finite horizon at each sample period. As 

shown in Fig. 4, the first action from this optimal control 

sequence is carried out, and the procedure is repeated 

using the new measured (or estimated) state at the 

subsequent sampling time. Typically, the performance 

measure used is quadratic, incorporating penalties for 

both the control inputs and the system states. 

Consequently, MPC can often be regarded as a moving 

horizon or receding horizon control (RHC) problem, 

where each sampling instant involves solving a finite 

horizon constrained linear quadratic (LQ) problem [47].  

 
Figure 4. The receding-horizon principle [17] 

 

In the context of quadcopters, MPC offers significant 

advantages due to its ability to manage the nonlinear 

dynamics and constraints associated with aerial vehicles 

[48]. Quadcopter dynamics are inherently complex, 

involving interactions between thrust, torque, and 

aerodynamic forces. MPC can effectively handle these 

nonlinearities either by using a nonlinear model or by 

linearizing the model around a specific operating point 

[12]. One of the notable benefits of MPC in quadcopter 

control is its capability to manage constraints directly. 

Quadcopter operations often involve various constraints, 

such as maximum thrust limits, battery life, and altitude 

boundaries. MPC ensures that these constraints are 

respected by incorporating them explicitly into the 

optimization problem, thereby improving safety and 

operational efficiency [49]. 

At each time step, an optimization problem must be 

created and resolved as part of the mathematical 

formulation of MPC. In MPC, the cost function is 

typically designed to guarantee that, over a prediction 

horizon N2, the system output y will match a specified 

reference r (see Fig. 5). At each time step, this prediction 

and optimization process is repeated, with the system 

only receiving the first value from the optimized output 

path. MPC is commonly referred to as "receding horizon" 

control because of this iterative process. The underlying 

idea is that short-term predictive optimization can yield 

optimal performance over an extended period, based on 

the premise that errors in near-term forecasts are minimal 

compared to those further out. A key difference between 

MPC and traditional control methods lies in its 

integration of prediction and optimization, rather than 

depending on precomputed control laws. To capture the 

impact of changes in the manipulated variable u on the 

control variable y, the prediction horizon N needs to be 

long enough. Either a shorter prediction horizon N1 or 

the incorporation of delays into the system model—the 

latter being frequently more intuitive can be used to 

manage delays. In order to account for computing time, 

the shorter prediction horizon is typically set to N1=1, 

which means that the solution u is only used at the 

subsequent time step [18]. 

 
Figure 5. Function principle of a model-based predictive with horizons 

 

Subject to the restrictions and dynamics of the system, 

the goal is to minimize a cost function across the 

prediction horizon. A state-space representation of the 

system is necessary for MPC to function. The following 

linear equations are commonly used to characterize the 

state-space model [20,50].  

                                     

                                                        (25) 

The optimization problem can be expressed as: 

  ∑       

    

   

                          

Subject to: 

 (    
 

 
)    (  

 

 
)       

 

 
           

                                  

where: 

- Np is the prediction horizon. 

- Q and R are weighting matrices that define the relative 

importance of tracking error and control effort. 

-     ,     ,     , and      are the state and input 

constraints. 

MPC operates on the receding horizon principle: after 

applying u(k), the process repeats at the next time step 

with updated state measurements. This ensures that the 

control strategy is continuously optimized based on the 

latest available information [51-55]. 

V.SIMULATION RESULTS 

This section presents the results of the quadcopter 

control system simulation using MPC and LQR. The 
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performance of the system is evaluated in terms of open-

loop response, closed-loop response with MPC, and the 

effect of noise on the system's behavior. The open-loop 

response of the quadcopter system provides a baseline for 

evaluating the effectiveness of the MPC controller. In an 

open-loop configuration, there is no feedback control 

applied, meaning the system is subject to its natural 

dynamics without any corrective action. 

Figure 6 plot shows the open-loop response of the 

quadcopter in terms of its position (x, y, z) and 

orientation angles (ϕ, θ, ψ). The open-loop response 

indicates that the system cannot maintain stability on its 

own, particularly in terms of controlling its position and 

angels. This reinforces the necessity of implementing a 

closed-loop control strategy, such as MPC, to achieve 

desired performance. The closed-loop response with 

MPC as shown in Fig. 7, demonstrates the effect of 

applying the MPC controller to the quadcopter system. 

The MPC controller is designed to track the desired 

reference trajectory while respecting the physical 

constraints of the system. The simulation runs for 20 

seconds, starting from rest (x0 = zeros (12, 1)), with the 

goal of reaching and maintaining a reference position of 1 

meter in x, y, and z, with no rotation (zero angles). 

- Position (x, y, z) over time 

   The positions (x, y, z) quickly rise from 0 to 1 meter 

and stabilize. This corresponds to the quadcopter moving 

to the desired position of 1 meter in all three spatial 

dimensions. The rapid stabilization is due to the 

controller's effort to minimize the difference between the 

current position and the target (1 meter). The positions (x, 

y, z) quickly reach a steady-state value of approximately 

1 meter and remain constant, indicating a stable position 

response. The response settles within approximately 3 

seconds. The higher weight on the position in the MPC 

design prioritizes accurate position tracking, which is 

why the system reaches the desired position quickly and 

holds it steady. 

 

 
 

Figure 6. Open loop response 

 
Figure 7. Response of closed loop system 

 

- Angles (ϕ, θ, ψ) over time: 

 The angles ϕ, θ, ψ initially spike and then quickly 

return to zero. This represents the quadcopter's 

orientation adjusting during the initial movement and 

then stabilizing to maintain the desired level flight. The 

angles initially exhibit a sharp deviation before quickly 

stabilizing at zero. This transient behavior suggests that 

the system experiences an initial disturbance before the 

controller successfully returns the angles to their desired 

positions. The rapid settling indicates that the MPC 

controller effectively reduces oscillations and achieves 

stability. The transient spikes in the angles reflect the 

quadcopter's response to the control inputs that move it to 

the target position. The system quickly dampens these 

spikes due to the controller's designed response to 

minimize deviations in orientation. 

   The control inputs initially show spikes, corresponding 

to the strong corrective actions needed to move the 

quadcopter to its desired position and stabilize its angles. 

After the initial phase, the inputs stabilize at lower values. 

 The initial spikes are necessary to overcome the system's 

inertia and achieve the desired position and orientation. 

The controller then reduces the control input magnitudes 

once the system is close to the target, maintaining 

stability with minimal effort. The Fig. 8 and Fig. 9 shows 

the trajectory of the quadcopter in space, where the 

reference trajectory is a path from the initial position (x, 

y, z) = (0, 1, 3) to the final position (x, y, z) = (2, 2, 5), x-

Axis (x in meters): - Ranges from 0 to 2 meters. The 

quadcopter is moving along the x-axis from its initial 

position at 0 meters to 2 meters, y-Axis (y in meters): - 

Ranges from 0 to 1 meter. The reference starts from 1 

meter, and the quadcopter eventually moves towards 2 

meters in the y direction, z-Axis (z in meters): - Ranges 

from 0 to 5 meters. The quadcopter is moving from an 

initial height of 3 meters to a final height of 5 meters. 
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Figure 8. 3D Trajectory of the Quadcopter. 

 

The actual trajectory closely follows the reference 

trajectory. Initially, there is a slight deviation as the 

quadcopter stabilizes and corrects its path. After this 

adjustment, the trajectory closely aligns with the 

reference, demonstrating the effectiveness of the 

controller in guiding the quadcopter along the desired 

path. 

 

Figure 9. Trajectory of Position (x, y, z) 

 

All three positions (x, y, z) follow the reference 

trajectories with minimal lag or overshoot. The controller 

effectively adjusts the quadcopter’s position over time to 

follow the reference path. So, The MPC controller 

effectively stabilizes the quadcopter, allowing it to track 

the desired position and orientation accurately. The 

response is smooth, with minimal overshoot and a fast-

settling time, demonstrating the robustness of the MPC 

strategy. To quantify the performance improvement 

provided by the MPC controller, key metrics such as rise 

time, settling time, and overshoot are computed for the 

position of the quadcopter. These metrics are summarized 

in Table II. 

TABLE II. THE PERFORMANCE OF QUADCOPTER USING MPC 

 

The MPC controller exhibits a rapid rise time and 

settling time, with minimal overshoot across all axes. 

This indicates that the controller effectively manages the 

quadcopter's dynamics, ensuring prompt and precise 

tracking of the reference signals. 

Figure 10 illustrates the spiral quadcopter’s trajectory 

after applying the MPC strategy. The next step involves 

tracking this predefined path, where a smooth trajectory 

is essential for stable and efficient quadcopter operation. 

To assess the effectiveness of the MPC controller, a 3D 

reference trajectory will be used. By comparing the 

quadcopter’s actual path with the desired trajectory as 

shown in Fig. 11-14, we can evaluate key performance 

metrics such as: 

 Tracking accuracy (deviation from the reference 

path) 

 Response time (how quickly the quadcopter adjusts 

to changes). 

 Stability (smoothness of motion without oscillations) 

The results will help determine the MPC's robustness in 

handling complex maneuvers, ensuring optimal 

performance in real-world flight scenarios. 

 

 
 

                 Figure 10. Spiral trajectory 
 

 
          Figure 11. Response of position and velocity-based x-axis  

 
Axis Rise Time 

(s) 

Settling Time 

(s) 

Overshoot 

(%) 

x 0.72 2.091 4.143 

y 0.72 2.063 3.9725 

z 0.77 1.745 2.1275 



IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY, VOL.13, NO. 2, Jun 2025                                                                              22 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                             Paper ID: EN192 

 
         Figure 12. Response of position and velocity-based y-axis 

 

 
            Figure 13. Response of position and velocity-based z-axis 

 
        Figure 14. φ, θ, ψ values as a function of time 

 

In the simulation of quadcopter dynamics, incorporating 

noise is essential for evaluating the robustness of the 

control system under realistic and challenging conditions. 

Noise represents random disturbances that can affect the 

system's performance, such as environmental factors like 

wind or sensor inaccuracies. To assess the robustness of 

the MPC controller, noise was introduced into the system 

to simulate real-world disturbances. This section details 

the introduction of noise into the simulation, its impact on 

the quadcopter’s performance, and the MPC controller's 

ability to compensate for these disturbances.  

For this simulation, Gaussian noise is used to model these 

random disturbances. Gaussian noise is characterized by 

its mean and standard deviation, where the standard 

deviation determines the intensity of the noise. By 

introducing Gaussian noise, we aim to replicate the effect 

of unpredictable environmental conditions on the 

quadcopter, providing a more rigorous test of the control 

system's resilience. One of the most common sources of 

disturbance for quadcopters in real-world scenarios is 

wind. Wind exerts aerodynamic drag on the quadcopter, 

which can cause deviations from its desired trajectory. 

The drag force    due to wind can be described by the 

following equation [26].  

  =
 

 
 ρ  A  . 

 ρ is the air density, approximately 1.225 kg/   at sea 

level. 

   is the drag coefficient, assumed to be 1.0 for the 

Quadcopter. 

 A is the cross-sectional area facing the wind, 

assumed to be 0.1  . 

 v is the wind speed in meters per second (m/s). 

In this context, the noise level in the simulation is related 

to the disturbances caused by wind. A higher wind speed 

results in a greater drag force, which is reflected in the 

increased noise level in the simulation. 

To estimate the wind speed that corresponds to a noise 

level of 0.1 in the simulation, we can relate the positional 

deviation Δx caused by the drag force    to the 

quadcopter's dynamics: 

                                    Δx = 
        

 
 

m is the mass of the quadcopter (1.38 kg). 

Δt is the simulation time step (0.05 seconds). 

Determining noise level for a specific wind speed (50 

km/h). 

  =
 

 
×1.225×1.0×0.1×         ≈ 11.82 N 

Noise level ≈  
          

    
 ≈ 0.021 

A wind speed of 50 km/h corresponds to a noise level of 

approximately 0.021. 

The MPC controller demonstrates robust performance 

even in the presence of noise as shown in Figures 15 and 

16. While noise introduces minor deviations in the 

response, the controller quickly compensates, maintaining 

stability and keeping the quadcopter on its desired 

trajectory. This showcases the MPC's capability to handle 

disturbances effectively, making it a reliable control 

strategy for real-world applications. 
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Figure 15. 3D Trajectory of the Quadcopter with noise effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. The system's behavior in the presence of noise. 

 

The introduction of noise with a standard deviation of 

0.021 provides a more rigorous test of the MPC 

controller’s robustness. This noise level introduces 

moderate disturbances that challenge the system's ability 

to maintain accurate control and follow the desired 

trajectory. By analyzing the simulation results with this 

noise level, we gain valuable insights into how effectively 

the MPC controller can compensate for significant 

disturbances, ensuring its reliability and performance in 

real-world conditions. 

To create an optimal state feedback controller using the 

LQR for comparison with MPC, it is essential to define 

the cost matrices Q and R [3]. The diagonal elements of 

Q indicate the penalties associated with the respective 

state variables, while the diagonal elements of R reflect 

the penalties for the control inputs. The time response of 

the closed-loop system can be simulated, as illustrated in 

Fig. 17, utilizing the LQR controller The evolution of the 

state system over time, depicted in Fig. 18, can be 

analyzed using tools like MATLAB's Simulink. The 

weighting matrix R is vital for influencing the 

performance of the LQR controller. By adjusting the 

values of R, we can fine-tune the controller's focus on 

minimizing control inputs while still maintaining the 

desired performance levels. In the case of the quadcopter, 

modifications to the weighting matrix R can lead to 

significant changes in its behavior [3]. 
 

Figure 17. 3D response using LQR [3] 

 

 

Figure 18.  States system using LQR [3] 

 

Table III provides a comparison of the quadcopter's 

behavior based LQR and MPC. In summary, this paper 

provided a comprehensive analysis of the quadcopter 

control system's performance using MPC and LQR.   

MPC is superior for handling constraints, tracking 

complex trajectories, and adapting to dynamic 

environments but is computationally heavier. LQR is 

simpler and less resource-intensive, making it suitable for 

linear systems with predictable behavior but may struggle 

with nonlinearities and constraints. 

TABLE III. COMPARISON OF MPC AND LQR FOR QUADCOPTER 

CONTROL 

Feature Model MPC LQR 

Handling 
Constraints 

Explicitly 
incorporates 

constraints on inputs 
and states, making it 
suitable for complex 

environments. 

Does not inherently 
handle constraints; 
constraints must be 
managed separately. 

Trajectory 
Tracking 

More effective for 
tracking complex 
trajectories due to its 
predictive nature. 

Can handle linear 
trajectories well, but 
may struggle with 
highly nonlinear 
paths. 
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Adaptability 

Adapts to changing 
conditions by re-
evaluating the control 
inputs at each time 
step. 

Less adaptable; the 
controller is designed 
for a specific set of 
conditions. 

Computational 
Complexity 

Typically requires 
more computational 
resources due to real-
time optimization 
calculations. 

Generally, less 
computationally 
intensive, as it 
involves simpler 
calculations. 

Performance 
with Nonlinear 

Dynamics 

Better suited for 
nonlinear systems, as 
it can model and 
predict future states. 

Assumes linear 
dynamics; 
performance may 
degrade with 
significant 
nonlinearities. 

Implementation 

More complex to 
implement due to the 
need for optimization 
algorithms and a 
predictive model. 

Easier to implement 
with a straightforward 
design process based 
on state space. 

Tuning 

Requires careful 
tuning of prediction 
horizons and cost 
matrices to achieve 
desired performance 

Tuning focuses on the 
weighting matrices Q 
and R, which can be 
simpler but still 
requires careful 
consideration. 

Robustness 

Can be more robust 
to disturbances and 
uncertainties due to 
its predictive nature. 

May be less robust in 
the face of significant 
disturbances unless 
designed with 
robustness in mind. 

VI. CONCLUSION 

The robustness of MPC was demonstrated by effectively 

stabilizing and controlling a quadcopter, even in 

challenging scenarios involving noise and environmental 

disturbances. MPC was validated for maintaining the 

quadcopter's intended trajectory with high precision, 

highlighting its reliability for UAV applications. The 

advantages of a closed-loop system were emphasized, 

showcasing MPC's critical role in maintaining stability 

and performance by adapting to varying conditions. 

This confirms MPC's potential and practical suitability 

for real-world UAV deployments, particularly in 

unpredictable environments. For the future work, 

integrate machine learning algorithms to enable the MPC 

system to self-tune its parameters based on real-time 

environmental inputs, enhancing its adaptability and 

responsiveness. In practice, the choice between MPC and 

LQR will depend on the specific application 

requirements, computational resources, and the expected 

operating conditions of the quadcopter. 
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