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Abstract— This paper delves into the effectiveness of 

the Discrete Wavelet Transform (DWT) in analyzing 

cardiac sounds, highlighting its benefits, practical 

applications, and associated challenges It reviews 

various DWT-based techniques for preprocessing, 

feature extraction, and classification of cardiac 

sounds, emphasizing their success in detecting 

anomalies and enhancing diagnostic precision The 

study showcases DWT's potential as a powerful tool 

for improving cardiac sound analysis  

The proposed method was evaluated, achieving an 

accuracy of 84%, with sensitivity ranging from 63% 

and specificity from 62% These results underscore the 

method's reliability in contributing to neural network 

systems for classifying cardiac sound signals as 

normal or abnormal The Adaptive Neuro Fuzzy 

Inference System (ANFIS), when combined with DWT 

attributes, emerges as an effective tool, showcasing its 

capability in the PhysioNet Challenge 2016.  
 

Index Terms— heart sound, discrete wavelet transform, 

adaptive neuro fuzzy inference system  

I. INTRODUCTION 

 Heart diseases cannot be adequately diagnosed through 

the analysis of heartbeat sounds by auscultation This 

method fails to provide the analyst with both qualitative 

and quantitative information about the phonocardiogram 

signals [1,2].  

The presence of murmurs and aberrations, caused by 

various pathological conditions of the cardiovascular 

system, can be observed in abnormal heartbeat sounds [2] 

However, it is evident from the study of the physical 

characteristics of heart sounds and human hearing that the 

human ear is ill-suited for cardiac auscultation [3] 

Consequently, the ability of clinics to diagnose heart 

sounds is limited. 

Additionally, during a single cardiac cycle, the sound 

emitted by the human heart consists of two dominant 

events known as the first heart sound (S1) and the second 

heart sound (S2)  S1 is associated with the closure of the 

mitral and tricuspid valves, while S2 is produced by the 

cessation of the aortic and pulmonary valve leaflets [1]  

S1 coincides with the timing of the QRS complex in the 

Electrocardiogram (ECG), and S2 follows the systoli 

pause in the normal cardiac cycle  Furthermore, the study 

of the physical properties of heart sounds and human 

hearing reveals that the human ear is not well-suited for 

cardiac auscultation [3]  

Compared to the pulmonic component, the aortic 

component is louder  It can be heard at every auscultation 

location  As opposed to the pulmonic, which can only be 

heard at the left base when the diaphragm of the chest 

piece is firmly pushed, it can be heard the Best at the 

right base  

Because the aortic valve closes before the pulmonary 

valve does during typical cardiac activity, the aortic 

component often has higher frequency contents and 

occurs before the pulmonary component  In the medical 

world, the interval in time between these valve activities 

is referred to as split [4-6] but this order of time 

occurrence can be reversed and its delay can vary in 

different disorders [1].  

Digital signal processing techniques allow for more exact 

measurement of the PCG signal's properties as well as 

other parameters like the position of the heart sounds S1 

and S2, the number of components for each sound, their 

frequency content, and their time interval  

The Fast Fourier Transform (FFT), can give a general 

idea of the frequency composition of cardiac sounds If 

the signal's stationary assumption is broken, however, 

FFT analysis is still only useful for a restricted range of 

values Heart sounds are categorized as non-stationary 

signals because they show noticeable variations over time 

and frequency Studying the time-frequency properties of 

such signals is crucial in order to comprehend their 

precise features. This study investigates normal and 

pathologically abnormal cardiac sounds in both the 

temporal and frequency domains using wavelet transform  

It has been shown that this method offers excellent 

temporal resolution for high-frequency components  In 

fact, as the frequency increases, the time resolution 

improves, and as the frequency decreases, the frequency 

resolution enhances [4,5]. Additionally, in certain 

pathological situations, the wavelet transform has proven 

to be able to evaluate the heart sound more precisely than 

other methods like STFT or Wigner distribution [6]. In 

actuality, extremely sensitive abrupt changes in the time 

direction cannot be tracked by the spectrogram (STFT).  
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The time frame must be kept as short as feasible in order 

to appropriately handle these temporal shifts  On the 

other hand, this will cause the time-frequency plane's 

frequency resolution to decrease  As a result, time and 

frequency resolutions are traded off [6]. Nonetheless, in 

the investigation of non-stationary signals, the Wigner 

distribution (WD) and the associated WVD (Wigner Ville 

Distribution) have demonstrated strong performances  

This results from the WD's capacity to distinguish signals 

in both the frequency and temporal domains  The absence 

of the time-frequency trade-off issue is one benefit of the 

WD over the STFT  However, because the WD uses 

cross-terms in its response, it has a drawback  These 

cross-terms have no physical meaning and are the result 

of the WD's nonlinear behavior  Smoothing the time-

frequency plane is one method of eliminating these cross-

terms, although doing so will result in less resolution in 

both time and frequency [7].When the WD is applied to a 

heart sound signal, it fails to separate or display the signal 

components in both the time and frequency directions [6] 

However, in basic monocomponent signal analysis, it 

offers great time and frequency resolution [8,9]. The 

wavelet transform (WT) is an alternate method of 

analyzing non-stationary signals that gets around these 

issues with the STFT and WD One method used in the 

field of time-frequency distributions is the wavelet 

transform Based on a dyadic pavement, the representation 

timing of WT seems more adaptable  It is a mathematical 

structure where the presence of an orthonormal basis is 

made feasible by a formula of perfect inversion [10]. As a 

result, the wavelet becomes a simultaneous function of 

frequency and time. It has been demonstrated that this 

transform offers sufficient PCG signal properties to assist 

clinics in measuring the time-frequency characteristics of 

the PCG signal both qualitatively and quantitatively, 

which will ultimately help with diagnosis. This study 

aims to investigate the effectiveness of utilizing artificial 

intelligence techniques and wavelet transform in 

diagnosing cardiac murmurs, which are indicative of 

underlying heart conditions  Accurate and timely 

diagnosis is essential for effective cardiovascular disease 

management [10]. The proposed approach employs 

artificial intelligence (AI) methods, specifically machine 

learning (ML), in combination with wavelet transform as 

a preprocessing technique  Wavelet transform is applied 

to murmur signals to extract important features, 

enhancing diagnostic accuracy  The machine learning 

model is trained using the PhysioNet Challenge 2016 

database of simulated cardiac murmurs  The Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is trained to 

identify patterns and characteristics related to murmurs, 

with its classification accuracy being thoroughly 

assessed.       

II. BACKGROUND 

A. Heart Sounds 

    In the intricate cardiovascular system of humans, a 

typical cardiac cycle comprises of two distinctive heart 

melodies: the initial heart note S1 and the subsequent 

heart note S2. Abnormal sounds can serve as red flags for 

underlying conditions; for instance, a noticeable third 

heart sound S3 might hint at heart malfunction, whereas a 

murmur could suggest issues with valves or an opening in 

the septal barrier [11]. The spectrum of S1 and S2 spans 

from 20 to 200 Hz, whereas the frequencies of S3 and S4 

fall within the range of 15 to 65 Hz [12]. 

Murmurs, resulting from the turbulent flow of blood 

within the intricate heart system, serve as distinctive 

abnormal auditory signals. These sounds play a crucial 

role in determining the rhythm and tone essential for the 

detection of cardiovascular ailments [13]. Within the area 

of medical diagnosis, murmurs often serve as the primary 

indicator for identifying valvular conditions of the heart 

[14]. Clinically categorized, murmurs manifest in two 

forms: systolic murmurs and diastolic murmurs. Systole 

witnesses the occurrence of aortic stenosis, mitral 

regurgitation, and tricuspid regurgitation, while diastole 

presents mitral stenosis and tricuspid stenosis [15]. 

B. Phonocardiography (PCG) 

    A Furthermore, phonocardiography (PCG) enables the 

extraction of informative features from heart sounds that 

are imperceptible to the human ear [19]. Traditional heart 

auscultation, which relies on brief, stethoscope-assisted 

listening, is subjective and depends on the physician's 

expertise in discerning various heart sound patterns [21]. 

In contrast, PCG provides an objective and standardized 

assessment method capable of continuously capturing 

heart sounds, overcoming the limitations of human 

auditory perception [22]. Therefore, there is a need for 

more objective tools like PCG to facilitate the 

examination of heart sounds and cardiac irregularities, 

thereby enhancing diagnostic efficacy overall. 

A typical PCG recording comprises two primary cardiac 

sounds: the first heart sound (S1) and the second heart 

sound (S2), which correspond to the closure of the 

atrioventricular and semilunar valves, respectively [23]. 

The period from the onset of S1 to the onset of S2 is 

referred to as the systole interval (S1-S2 interval), while 

the period from the onset of S2 to the onset of S1 is 

termed the diastole interval (S2-S1 interval) [24]. The 

diastole interval is generally longer than the systole 

interval [25]. The mean duration and frequency range of 

S1 and S2 are approximately 100 ms and below 180 Hz, 

respectively [26]. Figure 1 illustrates a phonocardiogram 

signal displaying normal heart sounds along with S1, S2, 

systole, and diastole intervals. 
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Figure 1.   PCG signal of Normal heart sound 

 

Besides S1 and S2, additional cardiac sounds known as 

the third and fourth heart sounds (S3 and S4) may 

manifest under various physiological and pathological 

conditions. S3 typically occurs immediately following 

S2, while S4 is usually observed just before S1. In 

addition to these heart sounds, various types of cardiac 

murmurs may be detected in the signal. These murmurs 

stem from turbulent blood flow across the valves and are 

often associated with cardiac pathologies. Delays in the 

opening or closing of a valve can impede proper blood 

flow through the heart, leading to compromised 

circulation or potential overflow, resulting in murmurs. 

Murmurs may be audible during systole, diastole, or both 

cardiac intervals, and they typically exhibit higher 

frequencies (180-400 Hz) compared to the heart sounds. 

Figure 2 illustrates a phonocardiogram signal featuring 

murmurs and the third heart sound. 

 
Figure 2. PCG signal with murmurs and S3. 

 

The spatial coordinates, magnitude, and temporal extent 

of the cardiac sounds, the duration of systole and diastole 

phases, cardiac cycle, and the heart rate per minute are 

crucial factors in assessing an individual's cardiac 

function [27]. Various signal analysis methods commonly 

employed include Fourier Transform (FT), Short Time 

Fourier Transform (STFT), and Discrete Wavelet 

Transform (DWT). While FT and STFT are frequently 

utilized for analyzing stationary signals, their efficacy 

diminishes when dealing with non-stationary signals due 

to the inability to offer simultaneous time and frequency 

localization [28]. Conversely, DWT exhibits high 

performance in analyzing non-stationary signals such as 

Phonocardiogram (PCG) owing to its superior time-

frequency localization capabilities and multi-resolution 

analysis achieved through the utilization of the mother 

wavelet and windowing technique [29]. Through DWT, 

signal decomposition into distinct frequency bands is 

feasible, enabling the extraction of the desired frequency 

band for further processing. Consequently, the 

application of multi-resolution analysis based on DWT 

aids in eliminating redundant data and noise from the 

signal, while retaining essential clinical information 

crucial for diagnosis [30]. The optimal selection of 

decomposition levels and suitable mother wavelets 

significantly influences the effectiveness of DWT in 

signal analysis [31]. 

C. Discrete Wavelet Transform 

    The Discrete Wavelet Transform (DWT), as discussed 

in literature review [32,33], is founded on the principle of 

sub-band coding, facilitating rapid computation of the 

Wavelet Transform. Its computational efficiency is 

evident through reduced time and resource requirements, 

alongside its ease of implementation. Analysis of signals 

is conducted by employing a sequence of fundamental 

functions within the realm of the continuous wavelet 

transform (CWT), which are interconnected through 

uncomplicated scaling and translation processes. The 

mathematical representation of the continuous wavelet 

transform (CWT) is explicitly formulated as follows: 

 

      (   )  ∫  ( )
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]                 (1) 

 

In this context, the variable x t () represents the initial 

signal, while ψ (t) denotes the wavelet function, with a 

and b serving as the scaling and displacement factors that 

define the magnitude and location of the wavelet 

function. 

In the analysis of DWT signals, multiple scales (m) and 

positions (k) can be selected to integrate wavelets and 

create a signal at a desired scale. By integrating the signal 

across all resolutions, the original input signal is 

obtained. In multilevel analysis, the scale of analysis is 

reduced by a factor of two. Hence, this represents a 

DWT-type dyadic wavelet transform, as outlined in 

“equation (2),”  [34]. 

  

      DWT (m, n) = 
 

√  
 ∑  ( ) [

     

  
 ]          (2) 

where 

m, n, k = Integers 

  = Mother wavelet 

n = Number of data points 

m = Scaling 

k = Shifting 

Signals are decomposed by the wavelet. The mother 

wavelet is a filter signal that separates the following two 

channels: 

 •  High-frequency component (detail coefficient: cD). 

 • Low-frequency component (approximation coefficient: 

cA). 

The high-frequency component will be used to analyze 

signal during transient state. 
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The mother wavelets used in the DWT are db, sym, coif, 

and bior [35]. Each mother wavelet for discrete-time 

signals, the discrete wavelet transform (DWT) is known 

to be a natural wavelet transform. The parameters for 

time and time-scale are both discrete. The algorithm used 

to carry out the transformation has an impact on the 

discretization process [36].  

As depicted in Figure 2, the discrete time-domain signal 

undergoes successive low-pass and high-pass filtering to 

generate the DWT. The utilization of the Mallat 

algorithm, also referred to as the Mallat-tree 

decomposition, is employed for this purpose. The half 

band filters exclusively yield signals that encompass a 

portion of the frequency spectrum at each stage of 

disintegration. Consequently, the frequency uncertainty is 

halved, thereby enhancing the frequency resolution by a 

factor of two. According to the Nyquist rule, if the 

highest frequency of the original signal was denoted as ω, 

and the sampling frequency was 2ω radians, the outcome 

is that the highest frequency of the signal is now reduced 

to ω/2 radians. Consequently, the signal can be sampled 

at a frequency of ω, allowing for the rejection of half the 

samples devoid of information. Due to the two-fold 

reduction, the time resolution is diminished by half as 

only half the number of samples are utilized to represent 

the entire signal. In contrast to the half-band low pass 

filtering, which reduces frequencies by half, and reduces 

resolution by the same amount, decimation by two 

increases scale. 

 

 
 

Figure 3. Decomposition tree of level 3. 

 

Up until the target level is obtained, the filtering and 

decimation process is repeated. The maximum number of 

levels is determined by the signal length. Next, starting 

with the last level of decomposition, all the coefficients, 

approximations, and details are concatenated to produce 

the DWT of the original signal. 

The discrete wavelet transform (DWT), a quick and 

effective algorithm for computing the wavelet transform 

of a discrete-time signal, is one of the most frequently 

used wavelet transforms. A signal is broken down by the 

DWT into a collection of wavelet coefficients at various 

scales and locations which can then be used to rebuild the 

original signal. The formula is defined as follows: 

 

      〈       〉  
 

⌈√  ⌉
∑  [ ]   
        [ ]    (3) 

 

the original signal x is decomposed by the Discrete 

Wavelet Transform (DWT) into a collection of 

coefficients      These coefficients enable the 

reconstruction of the initial signal through the application 

of the inverse discrete wavelet transform. The wavelet 

function      represents the function at scale j and 

translation k, with N denoting the signal's length. 

III. MATERIALS AND METHOD 

A. Signal Decomposition (DWT) 

     The utilization of a pair of uncomplicated low pass 

and high pass filters allows for the implementation of the 

scaling function and wavelet functions. Upon considering 

the filters with their impulse responses represented as 

{H(n), n ЄN} for the low pass filter and {G(n), n ЄN} for 

the high pass filter, the signal's decomposition through 

Discrete Wavelet Transform (DWT) can be depicted as 

illustrated in Figurer (6). This particular decomposition is 

commonly referred to as dyadic decomposition. In the 

initial stage, the frequency spectrum is bifurcated into 

two identical parts (low pass and high pass). 

Subsequently, the second stage further divides the low 

pass band into an additional low pass band and high pass 

band. This process continues with the second stage 

dividing the lower half into quarters and so forth [41]. 

 

 
Figurer 4. Signal decomposition using DWT 

IV. CLASSIFICATION 

A model for detecting pathological signals is developed 

utilizing the Adaptive Neuro Fuzzy Inference System 

(ANFIS). The predictive classification model is 

constructed by utilizing a dataset consisting of 100 

normal and pathological signals obtained from the 

PhysioNet-Challenge 2016 in Cardiology Challenge 

dataset for training and testing purposes. Feature 

extraction is performed on each PCG signal of the 

database using Mel-scaled power spectrogram and mel-

frequency cepstral coefficients (MFCC). Subsequently, 

these features are inputted into a deep neural network for 

model training with tensor flow. The model achieves an 

overall classification accuracy exceeding 84%. Hence, 



  297                             SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024                             
 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT042 

this model can serve as an effective and reliable method 

for automatically differentiating between normal and 

abnormal heart sounds. The classification model's various 

steps are illustrated in Figure 5. 

 
Figure 5. diagram of the proposed method 

V. ADAPTIVA NEURO FUZZY 

INFERENCE SYSTEM (ANFIS) 

   The ANFIS classifier is a method of artificial 

intelligence that is suggestive in nature when it comes to 

the classification of data. Within the ANFIS architecture, 

there are five layers of nodes that play a crucial role. 

These layers have been designed to conduct a comparison 

between the input signal and the knowledge that has been 

previously stored through training. While two of the 

layers within ANFIS are adaptive, the remaining layers 

are made up of fixed nodes as indicated by references 

[28] and [29]. The parameters introduced into ANFIS for 

processing include Mean, SD, VAR, and Entropy. In the 

context of ANFIS, the value of 1 is used to signify an 

abnormal output, whereas the value of 0 is employed to 

denote a normal output.  

VI. FEATURE EXTRACTION 

Relevant features were extracted from the preprocessed 

signal, enabling the classification of the signal as normal 

or abnormal. These features include mean, standard 

deviation (SD), variance (Var), and entropy. Mean: 

Represents an intermediary value denoting the central 

tendency of all signal values. Standard Deviation - SD: 

Quantifies the extent of dispersion exhibited by signal 

values in relation to the mean. Variance - Var: The 

standard deviation metric serves as an alternative 

indicator of the spread of data points. Entropy: Assesses 

the level of unpredictability or randomness inherent 

within the signal data. The process involves the 

examination of cardiac sound signals subsequent to their 

processing, whereby a variety of crucial statistical 

parameters such as mean, standard deviation, variance, 

and entropy are derived from the processed signal. These 

metrics are subsequently utilized for the purpose of 

distinguishing between a normal and pathological cardiac 

signal. 

VII. EEPERIMENTAL WORK 

The function diagram of the proposed approach is 

represented in Figure 6, which consisted of 6 stages. All 

the steps of the proposed method are described in the 

following subsections. 

 

 
Figure 6 - Diagram Block of the purposed method 

 

A.  The Dataset 

The dataset used in this study is part of the PhysioNet-

Challenge 2016 [37] is a worldwide repository 

comprising over 3000 recordings. The duration of heart 

sound recording was about 10-60 seconds. The 

recordings are categorized into distinct classes denoted as 

A, B, C, D, E and F. A total of 1886 recordings were 

gathered from classes A, B, and E. These recordings were 

then partitioned into training and testing datasets of 80% 

and 20% respectively. 

 

 

 Figure 7 - PCG Signal from PhysioNet-Challenge 2016 

 

B.  Per-processing 

    The initial step involves preprocessing the cardiac 

sounds to produce the necessary Heart Sound data. 

During the preprocessing phase, the Heart Sound data 

undergoes normalization, filtering, and feature extraction. 

The normalization process is mathematically defined by 

the equation x(n) = xr(n) − xr(min) / xr(max) − xr(min) 

(1), where xr(n) represents the recorded PCG signal and 

x(n) signifies the normalized Heart Sound signal [40]. 

Additionally, xr(min) and xr(max) denote the minimum 

and maximum values of the Heart Sound, respectively 

Subsequently, in the filtering stage, second-order high-

pass and low-pass Butterworth filters with cut-off 

frequencies of 15 Hz and 700 Hz are utilized to filter the 

normalized PCG signal and eliminate undesired 

background noise. 



Nadia Algolaib and Ali Abdulshahed/ Exploring The Potential of Using Discrete Wavelet Transform (DWT) for Heart Sound Analysis                  298 

 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT042 

VIII. RESULTS AND DISCUSSION 

     The precision, recall, and F1-score are metrics utilized 

for evaluating the performance of a classifier during 

testing. These metrics are calculated based on the 

classifier's true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) values. A 

confusion matrix is employed to ascertain the classifier's 

performance, as illustrated in Figure 8. To evaluate the 

performance of the system, statistical metrics such as 

PRECISION and RECALL are calculated using 

“equations (3), (4), and (5) “. 

 

Precision D TP = (TP + FP)             (3) 

RECALL D TP = (TP + FN)           (4)  

F-scoreD2 precision RECALL=   [precision C 

RECALL]                               (5) 

 where: 
TP: true positive represents the abnormal samples 

detected correctly 

FP: false positive represents the normal samples detected 

as abnormal. 

TN: true negative represents the normal samples detected 

correctly. 

FN: false negative represents the abnormal samples 

detected as normal. 

The confusion matrix is used to classify heart disease, 

where rows are natural and columns represent expected 

categories. Country cells indicate the number of accurate 

predictions. In this case, 225 predictions were made for 

individuals without (Normal) and 89 for those with 

(Abnormal). The binary classification model showed 

higher accuracy in determining heart disease. 

 

 
Figure 8. confusion matrix 

 

In Figure 9 the y-axis shows the recall, which is the 

proportion of positive cases that were correctly identified 

by the model. 

The x-axis shows the precision, which is the proportion 

of the model’s positive identifications that were actually 

correct. 

The curve in the plot shows the trade-off between recall 

and precision for different classification thresholds. As 

the threshold for classifying something as positive 

increases, the precision will increase (because the model 

is being more careful about classifying things as 

positive), but the recall will decrease (because the model 

is missing more actual positive cases). 

 
Figure 9 F1-scoren over Epochs 

 

The training and testing performance was evaluated using 

a training and testing dataset. The figure 10 shows Recall 

trends were across epochs for both datasets, quantifying 

the model's ability to correctly identify positive cases.  

 

 
Figure 10. The training and testing performance (Precision) 

 

   Training and assessment efficacy were assessed 

utilizing a training set and a testing set. The Figure 11 

illustrates the retrieval performance across different age 

groups for both the training set (depicted by the red line) 

and the testing set (depicted by the blue line). Recall 

serves as a metric for ascertaining the percentage of 

positive instances correctly distinguished by the model, 

specifically referring to accurately classified 

abnormalities in heart sounds. The recall typically rises as 

the quantity of agreements for both datasets increases, 

indicating an enhancement in the training and assessment 

efficacy of the training data and its capacity to detect 

irregularities in heart sounds. Nonetheless, it was 

observed that the recall rate on the testing set (Blue Line) 

consistently lagged behind that of the training set (Red 

Line). This discrepancy in performance is deemed highly 

appropriate. 
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Figure 11. The training and testing performance (Recall Over Epochs) 

 

In this manuscript, a machine learning technique known 

as Adaptive Neuro-Fuzzy Inference System (ANFIS) was 

applied for the purpose of identifying the auditory signals 

of the cardiac organ, distinguishing between normal and 

abnormal rhythms. The effectiveness of ANFIS was 

assessed through the utilization of distinct sets of data for 

training and testing. The graphical representation 

illustrates the variations in error rates across different 

stages of development for both the training set (depicted 

by the red line) and the test set (depicted by the blue line). 

Error, in this context, serves as a metric for evaluating the 

extent to which ANFIS-generated forecasts align with the 

actual categorization of cardiac sounds, whether they are 

normal or abnormal. Lower error values are indicative of 

superior performance by the ANFIS model. Generally, 

the error rate exhibits a decline with the progression of 

development stages for both the training and testing 

datasets, suggesting that the model acquires knowledge 

from the training data and enhances its capacity to make 

precise distinctions regarding abnormal cardiac sounds. It 

was observed that the error rate in the training dataset 

(red line) consistently converges towards a lower 

threshold in comparison to the test dataset (blue line) 

across various developmental stages. This disparity in 

performance levels alludes to the presence of an 

excessive degree of fitting. Figure 12. 

 

Figure 12. Loss Over Epochs for Machine Learning (ANFIS) Training 

IX. CONCLUSION 

   This study explores the intricacies of feature extraction 

techniques, preprocessing approaches, and ANFIS-based 

classification methodologies utilizing Discrete Wavelet 

Transform (DWT). The results for classifying normal or 

abnormal heart sounds achieved an accuracy of 84%, 

with sensitivity ranging from 63% and specificity from 

62%. These features demonstrate reliability in 

contributing to neural network systems for classifying 

cardiac sound signals. The combination of ANFIS and 

DWT attributes proves to be a valuable tool, effectively 

participating in the PhysioNet Challenge 2016. 
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