
 287 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

Design and Implementation of Arabic Python

Programming Language Interface

Abstract—This study aims to simplify programming

learning for Arabic-speaking students of the Faculty of

Information Technology by introducing a simple

programming language in Arabic that covers the

curriculum of the Programming 1 course. The proposed

approach named ArPy (Arabic Python) is rule-based and

enables the generation and execution of Python code from

Arabic-written code through various steps, including

preprocessing, lexical analysis, word mapping, and code

generation. Additionally, it provides error detection during

code execution. Experimental results have clearly validated

that the implemented model (ArPy) is able to efficiently

generate functional English Python code from Arabic code

with a similarity accuracy of about 87%. Furthermore,

ArPy has received positive feedbacks from the target users

bridging the language barrier in the field of programming

education in Arabic countries.

Index Terms—Arabic programming, language interface,

natural language processing, Python, programming

education.

I. INTRODUCTION

Programming’s evolution closely aligns with

computing progress and development. Early computers

operated through complex binary machine language,

posing challenges for human understanding. Then,

higher-level programming languages emerged, making

code more human-friendly. Thus, compilers are able to

translate code and detect syntax errors in these languages

[1, 2]. Achieving programming expertise demands

experience, tool mastery, problem-solving skills, and

strategic design [3]. However, English predominance

hinders non-native speakers in programming education.

Programming languages are predominantly written in

English, which poses a significant barrier to entry for

non-English speakers [4]. Programming languages,

documentation, and online resources are primarily

available in English, making it difficult for non-native

English speakers to understand programming concepts,

navigate the subject's complexities, and contribute to the

programming community [5, 6]. Consequently, Arabic

speakers in Libya for example face challenges in their

programming education [7].
ـــ

Received 20 May , 2024; revised 11 May, 2024; accepted 15 Mar 2024.

Available online 08 Aug, 2024.

Swidan and Hermans' study [8] explored the design of

programming languages for non-English speakers,

focusing on key aspects like keyword translations,

variable naming, numeral handling, punctuation

integration, right-to-left language support, and

multilingual programming facilitation. However, limited

research exists on programming in Arabic using Python, a

beginner-friendly language [9]. Moreover, existing

methods lack flexibility in handling different writing

styles and may not effectively translate Arabic words into

code, particularly in the context of Python programming

[9]. To our knowledge, there is no comprehensive, no

easy to use, flexible, and accurate Arabic programming

language has been developed.

Thus, it is necessary to create a simple programming

language in Arabic for beginners of IT students covering

the curriculum of Programming 1 course. This can be

done by providing keyword and error messages

translations into Arabic language [8]. By making

programming more accessible to Arabic speakers, we can

promote inclusivity and diversity in the field of

programming.

This research aims to address the challenges of

programming language education for Arabic speakers by

developing an Arabic Python programming language

interface named ArPy (Arabic Python). The interface will

be designed to be flexible and handle different writing

styles, effectively translate Arabic words into Python

code, and support debugging by simplifying and

translating different debugging errors into Arabic. The

proposed programming language interface will make

programming more accessible to Arabic speakers,

especially beginners. It will also increase the number of

Arabic speaking programmers, which will benefit the

Arabic-speaking community and the global technology

industry.

The remainder of this paper is organized as follows:

Section II discusses some related work of Arabic

programming languages. Section III presents our model

named ArPy; whereas section IV conducts an extensive

experimentation of ArPy using several criteria. The final

section concludes this paper and discusses future research

directions.

Eltaleb, A.

Misurata University, Libya

a.eltaleb@it.misuratau.edu.ly

Ben Sasi, A.

College of Industrial Technology Misurata, Libya

prof_ahmed@cit.edu.ly

Eltaleb, A.and Ben Sasi, A. / Design and Implementation of Arabic Python Programming Language Interface 288

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

II. RELATED WORK

Due to the importance of this subject, as English

language constitutes an obstacle in teaching programming

for those whose original language is not English, many

researchers around the world have developed

programming languages in the native languages of their

countries, such as: Arabic, Spanish, and Russian, etc. In

the literature review, we explore studies on programming

languages designed for non-Arabic speakers. We have

categorized these studies into two categories: non-Arabic

and Arabic programming languages.

Beseiso et al. [10] (2010) conducted reports on the

survey of the support for Arabic in some of the existing

Beseiso Semantic Web technologies, and gives future

scenario in applying Semantic Web for Arabic

applications. Finally, multilingual support for these new

technologies is also discussed.

Elazhary [11] (2012) developed Arabic versions of

LISP and SQL in an attempt to figure out whether

developing versions of common programming languages,

that are like natural languages of programmers would

improve their programming capability. This research

developed translators that can translate programs between

the corresponding Arabic and English versions of these

programming languages for portability. The paper

explained the Arabic version of SQL.

In the work of Bassil and Barbar [12] (2012),

MyProLang was introduced as a programming language

that combines GUI and Arabic natural language, with

similarities to C++. MyProLang simplifies coding

through features such as include-directives, compiler

primitives, class declarations, and functions. It employed

GUI template-driven source-code generators, displaying

potential for improving productivity, software quality,

and time-to-market in software development. However,

it's worth noting that the GUI component might not be the

most effective tool for students aiming to grasp

fundamental programming concepts.

Othman [13] (2016) have built DHAD, an Arabic

programming language and compiler aimed at helping

students learn C and Assembly programming. DHAD

enables coding using Arabic keywords and translate them

into C and Assembly languages. It features its integrated

development environment and a "Help" option in Arabic.

The language also includes an Arabic Programming

Language (APL) extension with high-level language-like

keywords. The programming language offers numerous

keywords, empowering users to customize their format

and change any keyword within the DHAD program.

However, C and Assembly are compiled languages,

which might pose development challenges even when

using Arabic.

Bassil [14] (2019) published research which he

discussed designing a new programming language called

Phoenix. It is a computer programming language that is

high-level, object-oriented, compiled, and Arabic. The

syntax of its wording is exactly similar to the C#

language and is supported by an Integrated Development

Environment. A prototype software written using Phoenix

and its equivalent implementation written using C# were

seen in the experiments. Results have shown Phoenix’s

various strong characteristics, including functions, while-

loop, and arithmetic operations.

Almanie et al. [15] (2019) have developed an

edutainment application to educate the fundamentals of

Python for Arabic speaking children. The authors aimed

to enhance the digital fluency of Arab children,

empowering them to create, design, and innovate with

new media, moving beyond passive Internet activities

like texting, playing, browsing, and online interaction.

Python was chosen since it is a user-friendly and highly

readable programming language known for its concise

code compared to languages like C++ or Java. However,

this application is exclusively designed for kids.

Python is a beginner-friendly and widely-used

language known for its simplicity and readability [16,

17]. Thus, Python language should be more suitable for

education purpose especially for beginner programmers.

Python is an interpreted language which simplifies the

development and debugging phase for programmers

compared to compiled and low-level programming

languages such as C++, C, and Java [17]. However, the

interpreted language may be less efficient in big projects

compared to the compiled ones, but it remains suitable

for education purposes. Existing methods primarily focus

on Java, C++ and C languages [18].

III. METHODOLOGY

The front-end of our Arabic programming method

(ArPy) comprises preprocessing, lexical analysis, and

dictionary word mapping. It involves mapping Arabic

words into Python keywords to handle input code and

adapt to different writing styles. The back-end focuses on

code generation, producing Python code that can be

executed by machines.

In this research, we have focused on Arabic language

to simplify the learning of the basics of the programming

for beginner Arabic students who find it difficult in the

early stages. To overcome the problem faced by these

students, this research suggested a programming language

that uses the Arabic language to write commands instead

of the usual English language, according to the rules of

the programming language. The language model was

designed and implemented using Python programming

language as a fundamental tool to develop the concept

and for prototyping. Also, we used this language to

implement a graphical interface where the user is able to

test the model. Thus, when the user writes an Arabic code

according to some simple rules, the program will be able

to translate it and run it as a Python code using a number

of steps. The procedure of the implemented ArPy model

is shown by the block diagram presented in Figure 1. The

input code in Arabic passes by four stages which are:

preprocessing, lexical analysis, Arabic word mapping,

and code generation. Finally, the output is executed as a

Python program where the errors can be identified and

translated in Arabic language.

 289 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

Figure 1. Implemented ArPy model

In the following steps, we will describe each block of

the implemented ArPy model in details:

A. Arabic source code (Input)

Our method enables Arabic-speaking users to write

code using Arabic keywords, adhering to Python’s basic

programming rules.

B. Pre-processing

For effective Arabic code processing, the

preprocessing step is crucial to reduce the noise for the

next steps. We filter out diacritics and useless spaces and

we unify Arabic digits and punctuation.

C. Lexical analysis

The method matches simple and efficient regex

patterns to accurately segment the preprocessed code into

components. Thus, all components are detected and

extracted with their types (keywords, identifiers, symbols,

and numbers).

D. Arabic word mapping

We perform flexible mapping of Arabic components to

Python equivalents, accommodating multiple variants.

Unmatched keyword and identifier components are

transliterated. Figure 2 presents some elements in our

components dictionary, displaying Arabic words with

their Python equivalents.

E. Code generation

In this step, we iterate and assemble the extracted

components in order to generate a valid and functional

Python code with preserved indentations.

F. Result (Output)

The final step consists of executing the Python code

and showing the result in the output interface. Our

solution assists Arabic learners by detecting and

displaying errors in the generated code. We have

generated a dictionary to translate each error category

into Arabic. If any error occurs during executing the

code, the translation and line position of the error are

shown in the output zone. Users can conveniently edit the

Arabic code within the same interface. Figure 3 presents

some entries from our errors dictionary, displaying error

categories with their Arabic translations.

Figure 2. Sample entries of dictionary for mapping stage

Figure 3. Dictionary used for errors translation

Eltaleb, A.and Ben Sasi, A. / Design and Implementation of Arabic Python Programming Language Interface 290

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

IV. RESULTS

The results obtained from the experiments conducted

in this research will provide important insights into the

effectiveness and efficiency of the implemented method

through the evaluation of correctness of generated codes,

execution time, examples of treated samples, and

feedbacks from novice participants. Although no state-of-

the-art method is available, the dataset and results can

serve as a reference for future studies. The results

evaluate the proposed method's performance and

suitability for the targeted task.

A. Experimental setup

The experiments were conducted on a laptop computer

running Windows 10 with an Intel Core i5-9300H CPU

clocked at 2.40 GHz and 8 GB of RAM. The computer

was equipped with a GIGABYTE NVMe SSD with 512

GB of storage, which was used for all data storage and

retrieval. The whole solution was implemented using

Python 3.7 leveraging its computational logic capabilities

for implementing regular expressions and dictionaries.

Moreover, the Flask module was used for the web

interface.

B. Dataset

We have evaluated the performance of ArPy by using

4,999 snippets of Python codes from the dataset

constructed by Chowdary [19]. To ensure the reliability

of our experimental results, we identified and corrected

several inconsistencies and errors in the formatting of this

dataset, such as wrong indentations, misplaced snippet

separators, and corrupted keywords, etc. Knowing that all

the codes were written in Python language and there is no

available dataset for Arabic Python programming

language which fit our requirements. Thus, we translated

all the codes into Arabic. To perform this with less

manual effort, we selected the unique English Python

keywords and replaced them by equivalent words in

Arabic. Also, we translated and transliterated other

unique English tokens to Arabic. In addition, we slightly

and randomly edited some of the resulting Arabic words

to simulate the different human Arabic writing styles. The

information of the used dataset of Python code snippets is

shown in Table I. Since there are currently no existing

methods specifically designed for Arabic Python

programming, researchers can request our dataset to

enable comparisons of different methods in future

studies.

TABLE I. INFORMATION ABOUT ARABIC AND ENGLISH DATASETS

Unit
Number in original

English codes

Number in translated

Arabic codes

Characters 1,128,001 1,176,791

Tokens 311,838 346,606

Lines 42,745

Snippets 4,999

C. Metrics

The evaluation of the implemented ArPy will be

conducted using several metrics. One of the main metrics

is edit similarity, which will be used to assess the

correctness of the translation generated by the model. We

will use this metric for both character-level and token-

level comparisons. The character-level edit distance

metric measures the distance between two text samples

by counting the number of character insertions, deletions,

and substitutions needed to transform one sample into the

other. We follow the same principle for token-level but

using a sequence of tokens instead of sequence of

characters. We need to transform the distance value into

similarity value which reflects the degree of similarity

between the generated English Python code from the

Arabic code and the target, or the gold standard, English

Python code selected from the dataset. To transform the

edit distance value into a similarity which varies between

0% and 100%, we used the following formula [20]:

 ()
 ()

 ()
 (1)

where tar is the target English Python code in the dataset

from which the Arabic code is written, and gen is the

English Python code generated by our method from the

Arabic code. edit_distance is the character-level or the

token-level edit distance between the texts of the two

English Python codes. |tar| and |gen| are the number of

characters in the target and the generated codes,

respectively, while max is the maximum operator. For a

given set of snippets, we will calculate the edit similarity

for each pair of snippets consisting of the original (target)

snippet and the generated snippet, and then take the

average of all the results. This will provide us with the

overall average edit similarity AES for the set of snippets.

For that, we use the following formula [20]:

∑ (

) (2)

Where n is the number of snippets in the dataset, tari is

the i
th

 original (target) snippet, geni is the i
th

 generated

snippet, and sim(tari, geni) is the edit similarity between

the i
th

 original snippet and the i
th

 generated snippet.

We will also use other metrics to evaluate the model’s

performance. For instance, we will measure the execution

time of the model to evaluate its efficiency. We have also

provided input and output examples which illustrate the

performance of our model and demonstrate how our

model translates English code into Arabic. Additionally,

we will analyze the feedback provided by the users to

gain insights into the quality of the translations.

D. Evaluation of Translated Code Correctness

In Table II, we compared the original English code

with the generated English code by ArPy from its Arabic

translation, excluding several parts. The similarity

achieved was about 84% at the character level and about

87% at the token-level, effectively preserving code

functionality with good accuracy.

TABLE II. DATASETS EDIT-SIMILARITY COMPARISON

Excluded parts
Character-level

similarity

Token-level

similarity

No exclusions 84.20% 87.96%

Spaces excluded 83.40% 87.96%

 291 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

Excluded parts
Character-level

similarity

Token-level

similarity

Strings excluded 83.78% 88.03%

Tokens anonymized 92.08% 87.12%

Logical comparisons 92.73% 88.76%

E. Execution time

To evaluate the performance of ArPy, we measured the

model’s execution time on a range of input sizes. Table

III shows the execution times for input code sizes ranging

from 10 to 4,999 (all) snippets. Additionally, we provided

information about the number of lines, characters, and

tokens in each range of snippets. This information is

presented in separate columns in Table III.

TABLE III. EXECUTION TIME FOR DIFFERENT CODE SNIPPET RANGES

Snippets Lines Characters Tokens
Execution time

(milliseconds)

10 104 2,187 652 3.99

100 752 19,023 5,698 29.00

250 1,626 45,846 13,503 70.99

500 3,641 105, 187 30,512 169.00

750 6,688 183,902 53,526 357.02

1,000 8,885 246,966 72,242 412.09

2,000 17,142 461,515 134,525 775.95

3,000 25,002 684,332 199,420 1,192.90

4,000 34,215 935,255 274,445 1,652.63

4,999 42,745 1,176,582 346,639 1,993.09

Figure 4 depicts a curve that represents the relationship

between the snippet code sizes with the execution time.

The x-axis corresponds to the code ranges, while the

y-axis represents the execution time.

Figure 4. Execution time for different ranges of snippets

Overall, ArPy performs very quickly and adds

negligible time to the execution of normal Python code.

For beginner programmers, the difference in speed is not

even noticeable, as it is less than 4 milliseconds for 10

snippets. However, since Python is an interpreted

language and is not compiled into low-level machine

language, the overall method may be slower than other

programming languages such as C++.

Figures 5 and 6 illustrate snapshots for two samples of

codes using the implemented ArPy GUI package. ArPy

has maintained good accuracy even with challenging

cases, and successfully mapping Arabic Python keywords

into executable instructions. Results and errors are shown

in the output zone. However, complex strings and some

uncovered standard identifiers may lead to some errors.

Figure 5. Sample 1: ArPy code with correct output

Figure 6. Sample 2: ArPy with output error handling

F. Feedbacks

We conducted a survey about Arpy package with 50 IT

novices at the faculty of IT, Misurata using a

questionnaire of 5 questions with the following feedback

results, as shown in Figure 7:

 Ease of Use: 60% found our method very easy or

moderately easy to use.

 Effectiveness: 78% rated the method highly

effective in generating accurate code.

 Relevance to Programming Education:

Approximately 80% found it highly relevant.

 Task Completion Speed: 44% found it

challenging.

 Capability for Bigger Projects: Around 70%

indicated it is not suitable for larger projects.

These findings highlight the ArPy’s effectiveness and

relevance, as well as areas for improvement. Further

research is needed for larger projects. Also, users

suggested improving the input interface.

Eltaleb, A.and Ben Sasi, A. / Design and Implementation of Arabic Python Programming Language Interface 292

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT041

Figure 7. Responses across Feedback questions.

V. CONCLUSIONS

This research contributes to the field of natural

language processing for programming languages and

strives to bridge the language barrier in the field of

programming education in Arabic countries.

In this paper, we have endeavored to make

programming language education more accessible for

novice Arabic speakers by introducing a Python

programming language interface tailored to Arabic

language. The main goal was to create a flexible interface

for diverse writing styles, accurate Arabic code

translation, and simplified debugging with Arabic error

messages. Our results clearly indicate that the

implemented model (ArPy) is able to efficiently generate

functional English Python code from Arabic code with a

similarity accuracy of about 87%. Furthermore, ArPy

received positive feedbacks from the target users. As

future work, we aim to enhance the user experience

needed for larger projects and refine rules for more

accuracy. Moreover, we will explore direct low-level

compilation for faster Arabic code execution.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques, and Tools. Addison
Wesley, 2nd edition, 2006.

[2] Bashir S Abubakar, Abdulkadir Ahmad, Muktar M Aliyu,
Muhammad M Ahmad, and Hafizu U Uba. An overview of
compiler construction. International Research Journal of
Engineering and Technology (IRJET), 2021.

[3] MT Singh. How to teach programming languages to novice
student and problems in learning of students. Journal of
Computing Technologies (JCT), 1(2):5, 2012.

[4] Ibrahim Nnass, Michael A Cowling, and Roger Hadgraft.
Identifying the difficulties of learning programming for non-
English speakers at CQUniversity and Sebha University. Journal
of Pure and Applied Sciences, 21(4):290–295, 2022.

[5] Mrwan Ben Idris and Hany Ammar. The correlation between
Arabic student’s English proficiency and their computer
programming ability at the university level. International Journal
of Managing Public Sector Information and Communication
Technologies, 9:01–10, 03 2018.

[6] Adalbert Gerald Soosai Raj, Kasama Ketsuriyonk, Jignesh M
Patel, and Richard Halverson. What do students feel about
learning programming using both English and their native
language? In 2017 International Conference on Learning and
Teaching in Computing and Engineering (LaTICE), pages 1–8.
IEEE, 2017.

[7] Mrwan Ben Idris and Hany Ammar. The correlation between
Arabic student’s English proficiency and their computer
programming ability at the university level. International Journal
of Managing Public Sector Information and Communication
Technologies (IJMPICT) Vol, 9, 2018.

[8] Alaaeddin Swidan and Felienne Hermans. A framework for the
localization of programming languages. Available at SSRN
4385792, 2023.

[9] Hussam Hatem Abdul Razaq, Ayedh Shahadha Gaser, Mazin
Abed Mohammed, Esam Taha Yassen, Salama A Mostafad, Subhi
RM Zeebaree, Dheyaa Ahmed Ibrahim, Mohd Khanapi Abd
Ghania, and Rabah N Farhan. Designing and implementing an
Arabic programming language for teaching pupils. Journal of
Southwest Jiaotong University, 54(3), 2019.

[10] Majdi Beseiso, Abdul Rahim Ahmad, and Roslan Ismail. A survey
of Arabic language support in semantic web. International Journal
of Computer Applications, 9(1):35–40, 2010.

[11] Hanan Elazhary. Facile programming. Int. Arab J. Inf. Technol.,
9(3):256–261, 2012.

[12] Youssef Bassil and Aziz Barbar. Myprolang - my programming
language: A template-driven automatic natural programming
language. Lecture Notes in Engineering and Computer Science,
2173, 04 2012.

[13] Mohamed Tahar Ben Othman. Arabic computer programming
education tool. International Journal on Islamic Applications in
Computer Science and Technology, 4(1):25, 2016.

[14] Youssef Bassil. Phoenix–the Arabic object-oriented programming
language. International Journal of Computer Trends and
Technology, 67(2):7–11, 2019.

[15] Tahani Almanie, Shorog Alqahtani, Albatoul Almuhanna, Shatha
Almokali, Shaima Guediri and Reem Alsofayan. Let’s Code: A
kid-friendly interactive application designed to teach Arabic-
speaking children text-based programming. International Journal
of Advanced Computer Science and Applications, 10(7), 2019.

[16] Krishan Kumar and Sonal Dahiya. Programming languages: A
survey. International Journal on Recent and Innovation Trends in
Computing and Communication, 5(5):307–313, 2017.

[17] Nadia Mahmood Hussien and Yasmin Mohialdeen. A Pyarabic
Python library to create Arabic applications. Webology, 19:287,
10 2022.

[18] Daro C Arias Jaco and Melvin A Molina Sandoval. Design of a
prototype programming language in Spanish and its compiler
through tools JFlex and Java cup. In 2016 IEEE Central America
and Panama Student Conference (CONESCAPAN), pages 1–6.
IEEE, 2016.

[19] Pranith Chowdary. python-150k-code, 2023. URL
https://www.kaggle. com/ds/2917090. Accessed: 16/10/2023.

[20] Robert A Wagner and Michael J Fischer. The string-to-string
correction problem. Journal of the ACM (JACM), 21(1):168–173,
1974.

