
8                                                                                  IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY, VOL.11 , NO. 1, Dec  2023                                                                               

    

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                               Paper ID: EN181 

 

 

DESIGN And IMPLEMENTATION Of 

HYDRIC CONTROLLER For TWO-

WHEELED ROBOT  
 

Ahmed J. Abougarair                                                                                                  Ifaw F. Buzkhar 

Electrical and Electronics Engineering                                                                     Electrical and Electronics Engineering 

University of Tripoli, Libya                                                                                          University of Tripoli, Libya 
                                 a.abougarair@uot.edu.ly 

 

Abstract— The two-wheeled robotic machine (TWRM) with 

five degrees of freedom (DOF) is a type of mobile robot that 

consists of two wheels and a body that can rotate and move 

in different directions. The proposed architecture of the 

TWRM in this paper features five DOFs, which allows for 

greater flexibility and range of motion. However, this also 

makes controlling the system more challenging, as the center 

of mass (COM) changes while performing tasks in multiple 

directions. To address this issue, the study utilizes a state-

space model created by linearizing the non-linear modeling 

equations at the equilibrium point using the Lagrangian 

modeling. To stabilize the TWRM, several controllers were 

evaluated, including PID, LQR, and LQR with PID methods. 

The PID controller is a popular feedback control strategy 

that adjusts the control output based on the error between 

the desired and actual values of the system output. LQR is a 

state-space control technique that aims to minimize a cost 

function that expresses the system's performance criteria. 

The PID with LQR technique combines the strengths of both 

strategies, with PID used as a feed-forward to control the 

intermediate body (IB) and end-effector and LQR used as 

state feedback to regulate all states. The controllers were 

evaluated under various circumstances, including 

disturbance signals, tracking pathways, and moving 

actuators. Simulation results showed that the LQR with LQR 

controller performed better than the other two control 

systems in terms of least overshoot, rising time, and applied 

input forces. This suggests that the PID with LQR technique 

is a robust and effective control strategy for stabilizing the 

TWRM and improving its performance for various tasks. 

 

Index Terms: DOF, TWRM, PID, LQR, Stability. 

I. INTRODUCTION 

obile robots have become increasingly important in 

various industries, such as manufacturing, 

healthcare, and transportation, as they can perform tasks 

more efficiently and accurately than humans. Two-

wheeled robots, in particular, have gained popularity due 

to their ability to maneuver in tight spaces and navigate 

over uneven terrain. Mobile robots are capable of moving 

autonomously without human intervention within a 

designated area to perform various tasks. Two-wheeled 

robots come in different designs with additional 

mechanical components for specific activities.  

Maintaining balance and wheel control are essential 

characteristics shared by all two-wheeled robots [1,2]. 

Researchers have proposed various control strategies for 

regulating integer order systems, including a unique 

controller architecture based on pole placement fractional 

PI-state feedback [3,4]. Stability problems for systems 

with multiple zero eigenvalues near the origin were 

addressed by introducing a multi-delayed-proportional 

controller [5]. A nonlinear control approach for moving a 

four-degree-of-freedom mobile inverted pendulum robotic 

system while stabilizing the pendulum was also proposed 

[6]. For a wheeled inverted pendulum model, an adaptive 

backstepping control was suggested [7]. Researchers have 

also proposed control approaches for stabilizing and 

monitoring the trajectory of a self-erecting single inverted 

pendulum based on robust linear quadratic regulator 

(LQR) and proportional velocity (PV) controllers [8]. To 

stabilize two-wheeled self-balancing vehicles, a nonlinear 

H controller was developed [9]. Additionally, a study 

focused on improving the performance of a double 

inverted pendulum system [10]. This paper presents the 

mechanical description of a two-wheeled robotic machine 

(TWRM) in Section 2, followed by control system design 

in Section 3. Simulation results of various methodologies 

are presented in Section 4, and the paper concludes in 

Section 5 with a summary of the main findings. 

II. THE MECHANICAL  DESCRIPTION 

OF TWRM 

The degree of freedom (DOF) of a robot is defined by 

the number of ways it can move in space. In the case of a 

particular robot, its DOF is defined by four different types 

of translation along the X and Z axes. These four types of 

translation are represented by the rotational displacement 

of the right and left wheels and by the linear displacement 

of the robot's intermediate body (IB) and end-effector in 

M 
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the vertical and horizontal directions, respectively as 

shown in Fig. 1. The fifth DOF is the angular tilt of the 

robot's IB.  To assist in lifting, positioning, and 

transporting objects from one location to another, a two-

wheeled robot with two linear actuators has been designed. 

This robot is capable of achieving a large workspace due 

to its DOF, which is defined by the four types of translation 

along the X and Z axes. The right and left wheels' angular 

displacement through rotational displacement, the 

intermediate body's (IB) linear displacement in the vertical 

direction and the end-linear effector's displacement in the 

horizontal direction, and the robot's IB's angular tilt serve 

as representations for these four types of translation. The 

fifth DOF is the robot's IB's angular tilt. The two-wheeled 

robot with two linear actuators can move objects from one 

location to another while lifting and positioning them as 

required, making it a useful tool in various industries.  

 

 
Figure 1. Mobility of the vehicle [1] 

 

Friction plays an important role in the dynamics of a 

robotic system, especially in the case of a two-wheeled 

robot that is required to maintain balance in an upright 

position. The frictional forces that occur at the interface 

between the wheels and the ground, and between the 

wheels and the chassis, can affect the robot's motion and 

stability. To accurately model the dynamics of a two-

wheeled robot, it is crucial to consider the effects of 

friction. The Coulomb friction model is often used to 

represent the frictional forces between two dry surfaces in 

contact. The model assumes that the frictional force is 

proportional to the normal force between the surfaces and 

is limited by the coefficient of static friction. The 

coefficient of static friction represents the maximum 

amount of force that can be applied to the surface without 

causing the surfaces to slide past each other. Once the 

force exceeds this limit, the surfaces begin to slide, and the 

frictional force transitions to the kinetic friction regime, 

which is typically lower than the static friction coefficient. 

In the case of a two-wheeled robot with linear actuators, 

the Coulomb friction model can also be used to represent 

the frictional forces within the actuators. This is important 

in the design of the control system, as the frictional forces 

can affect the accuracy and precision of the robot's motion 

during the lifting and placing tasks. Overall, the accurate 

modeling of frictional forces is critical in the design and 

control of a two-wheeled robot with linear actuators, as it 

affects the robot's stability, motion, and precision. 

III. MATHEMATICAL  MODEL  OF 

TWRM 

In order to analyze the mechanical system of the two-

wheeled robot with linear actuators, various behaviors of 

its mathematical model are examined. This involves 

linking the forces or torques applied to the mechanical 

system's linkages to the kinematics of the system. The 

equations of motion for the system are extracted from the 

X, Y, and Z axes, and nonlinear mathematical models are 

derived from these equations. The equations of motion are 

similar to those obtained in previous papers [1-3]. The 

system is represented in a schematic diagram in Figure 2, 

and the physical parameters of the system are listed in 

Table 1. The equations of motion for the system are 

derived in this paper using the Lagrange formulation. The 

resulting nonlinear second-order differential equations 

capture the dynamics of the system under investigation and 

are listed in the motion equations. The mathematical 

modeling and analysis of the mechanical system of the 

two-wheeled robot with linear actuators are critical in 

designing and optimizing the control system for the robot. 

By understanding the system dynamics, it is possible to 

develop effective control strategies that ensure the 

stability, motion, and precision of the robot during its 

various tasks. 

 

Figure 2.  Schematic diagram of TWRM [2] 
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The equation for h1 

1

2
𝑚2(2𝑔 cos(𝜃) − 2ℎ1�̇�

2 − 4ℎ̇2�̇� − 2ℎ2�̈� + 2ℎ1̈ +

                        (𝛿�̈� + 𝛿�̈�) sin(𝜃) ) = 𝐹1 − 𝜇1h1̇                     (1) 
 

The equation for h2 

1

2
𝑚2(2𝑔 sin(𝜃) − 2ℎ2�̇�

2 − 4ℎ̇1�̇� − 2ℎ1�̈� − 2ℎ2̈ −  ( 𝛿�̈� +

            𝛿�̈�) cos(𝜃) ) = 𝐹2 − 𝜇2h2̇ = 𝐹2 − 𝜇2h2̇                  (2)                                   
Deriving the equation for dL 

1

2
𝑚1 (

1

2
𝛿�̈� +

1

2
𝛿�̈� − 𝑙𝜃2̇ sin(𝜃) + 𝑙�̈� cos(𝜃)) +

1

2
𝑚2 (ℎ1̈ sin(𝜃) + 2ℎ1̇�̇� cos(𝜃) − ℎ1𝜃

2̇ sin(𝜃) + ℎ1�̈� cos(𝜃) +

ℎ2̈ cos(𝜃) − 2ℎ2̇�̇� sin(𝜃) − ℎ2𝜃
2̇ cos(𝜃) − ℎ2�̈� sin(𝜃) +

1

2
𝛿�̈� +

1

2
𝛿�̈�) + 2𝑚𝑤𝛿�̈� + 

2𝐽𝑤𝛿�̈�

𝑅2
= 𝑇𝐿 − 𝜇𝑤 (

𝛿�̇�

𝑅2
) − 𝜇𝑐𝛿�̇�          (3)                            

Deriving the equation for dR 

1

2
𝑚1 (

1

2
𝛿�̈� +

1

2
𝛿�̈� − 𝑙𝜃2̇ sin(𝜃) + 𝑙�̈� cos(𝜃)) +

1

2
𝑚2 (ℎ1̈ sin(𝜃) + 2ℎ1̇�̇� cos(𝜃) − ℎ1𝜃

2̇ sin(𝜃) + ℎ1�̈� cos(𝜃) +

ℎ2̈ cos(𝜃) − 2ℎ2̇�̇� sin(𝜃) − ℎ2𝜃
2̇ cos(𝜃) − ℎ2�̈� sin(𝜃) +

1

2
𝛿�̈� +

1

2
𝛿�̈�) + 2𝑚𝑤𝛿�̈� +

2𝐽𝑤𝛿�̈�

𝑅2
= 𝑇𝑅 − 𝜇𝑤 (

𝛿�̇�

𝑅2
) − 𝜇𝑐𝛿�̇�       (4)   

Deriving the equation for θ 

2𝑚2�̇�(ℎ2̇ℎ2 + ℎ1̇ℎ1) +
1

2
𝑚2(ℎ1 cos(𝜃) − ℎ2 sin(𝜃)) (𝛿�̈� +

𝛿�̈�) +
1

2
𝑚1𝑙 𝑐𝑜𝑠(𝜃) (𝛿�̈� + 𝛿�̈�) − 𝑚2𝑔(ℎ1 sin(𝜃) +

ℎ2 cos(𝜃)) + �̈�(𝐽1 + 𝐽2 + 𝑚1𝑙
2 + 𝑚2ℎ2

2 + 𝑚2ℎ1
2) +

𝑚2(ℎ2ℎ1̈ + ℎ1ℎ2̈) − 𝑚1𝑔 𝑙 sin(𝜃) =

 0                                                                                       (5)                                     

In order to linearize the system, the equilibrium point in the 

vertical upright position is taken into account. This is 

achieved by considering the tilt angle when it is close to 

zero, typically within the range of 0.3 radians and -0.3 

radians. To describe the dynamics of the two-wheeled robot 

with linear actuators, ten state vectors, X, are used. These 

state vectors capture the system dynamics and are 

represented in the following vector [3,11]: 

 

𝑋 = [𝛿𝑅 𝛿𝐿 𝜃 ℎ1 ℎ2 𝛿�̇� 𝛿�̇� �̇� ℎ1̇ ℎ2̇] 

Where the state vector variables can be identified as 

follows: 

𝛿𝑅:Right wheel displacement,  𝛿𝑙:Left wheel displacement  

𝜃:Chassis pitch angle , ℎ1:Vertical linear link displacement 

 ℎ2:Horizontal linear link displacement   

𝛿�̇� ∶Right wheel velocity , 𝛿�̇�: Left wheel velocity 

�̇�: Chassis angular velocity , ℎ1̇:Vertical linear link velocity 

ℎ2̇:Horizontal linear link velocity 

 

State variables of wheels velocity, angular velocity and 

linear velocities of the links are derivative of wheels 

displacements, links linear displacements and the pitch 

angle, respectively, and can be formulated as follows: 

 𝑋1 = 𝛿𝑅      𝑋2 = 𝛿𝑙      𝑋3 = 𝜃     𝑋4 = ℎ1          𝑋5 = ℎ2                         

𝑋6 = 𝛿𝑅       𝑋7 = 𝛿𝐿      𝑋8 = �̇�      𝑋9 = ℎ1̇          𝑋10 = ℎ2̇ 

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑋1̇

𝑋2̇

𝑋3̇

𝑋4̇

𝑋5̇

𝑋6̇

𝑋7̇

𝑋8̇

𝑋9

𝑋10
̇

̇

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 𝐴63 0 𝐴65 𝐴66 𝐴67 0 0 𝐴610

0 0 𝐴73 0 𝐴75 𝐴76 𝐴77 0 0 𝐴710

0 0 𝐴83 0 𝐴85 𝐴86 𝐴87 0 0 𝐴810

0 0 0 𝐴94 0 0 0 0 0 0
0 0 𝐴103 0 𝐴105 𝐴106 𝐴107 0 0 𝐴1010]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝛿𝑅

𝛿𝐿

𝜃
ℎ1

ℎ2

𝛿�̇�

𝛿�̇�

�̇�
ℎ1̇

ℎ2̇]
 
 
 
 
 
 
 
 
 
 

+

               

[
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

𝐵61 𝐵62 0 𝐵64

𝐵71 𝐵72 0 𝐵74

𝐵81 𝐵82 0 𝐵84

0 0 𝐵93 0
𝐵101 𝐵102 0 𝐵104]

 
 
 
 
 
 
 
 
 

 [

𝑇𝑅

𝑇𝐿

𝐹1

𝐹2

]                                             (6) 

    These state vectors enable the representation of the 

five degrees of freedom of the robot's dynamics. By using 

these state vectors, it is possible to achieve a better 

understanding of the robot's behavior and develop effective 

control strategies to ensure its stability and precision during 

its various tasks. The state space model is represented by 

[1,3] . The coefficients of the state space model for the two-

wheeled robot with linear actuators are presented in the 

appendix of Ref. [1]. The state space model captures the 

dynamics of the system and enables the development of a 

control system that ensures stability and precision during 

the robot's various tasks.  The necessary torques for the 

right and left wheels are denoted as 𝑇𝑅  and  𝑇𝐿 , 

respectively. The linear actuator's produced forces F1 and      

F2  are used to move the payload in the vertical and 

horizontal directions, respectively. Figure 3 illustrates the 

instability of the 

system, as seen in 

Parameter Description Value Unit 

m1 Mass of the chassis 3.1 kg 

m2 Mass of the linear actuators 0.6 kg 

mW Mass of wheel 0.14 kg 

g Gravitational acceleration 9.81 m/s^2 

l 
Distance of chassis′ center of        

mass for wheel axle 
0.14 m 

R Wheel radius 0.05 m 

J1 Chassis moment of inertia 0.068 kg.m^2 

J2 Moving mass moment of inertia 0.0093 kg.m^2 

JW Wheel moment of inertia 0.00017 kg.m^2 

µ1 
Coefficient of friction of vertical 

linear actuator. 
0.3 Ns/m 

µ2 
Coefficient of friction of       
horizontal linear actuator 

0.3 Ns/m 

µC 
Coefficient of friction between      

wheel and ground 
0.1 Ns/m 

µW 
Coefficient of friction between   

chassis and wheel 
0 Ns/m 

δL, δR 
Angular displacement of right          

and left wheels 
- m 

θ 
Tilt angle of the intermediate 

body around the vertical Z axis 
- rad 

h1 Vertical linear link displacement - m 

h2 
Horizontal linear link 

displacement 
- m 

F1 
Force generated by the vertical 

linear actuator 
- N 

F2 
Force generated by the 

horizontal linear actuator 
- N 

TR, TL Right and left wheels torque - N/m 

  Figure 3. Open loop step response 

Table 1. TWRM parameters [1,2] 
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Fig. 4, where certain poles are located on the right side of 

the complex plane. It has been recognized that the system 

is unstable, meaning that small perturbations can cause the 

system to diverge and become uncontrollable. o address the 

instability of the system, various control strategies can be 

employed. These include feedback control, feedforward 

control, and model predictive control, among others. The 

choice of control strategy depends on the specific 

requirements of the robot's task and the characteristics of 

the system dynamics. 

 

 

 

 

 

 
 

Figure. 4. Pole-zero map for open-loop system 

 

IV. CONTROL  SYSTEM DESIGN  

In this section, we will demonstrate how to import the 

state-space model of the two-wheeled robot with linear 

actuators into Simulink. Next, we will add several 

controllers [12-15] to the Simulink model in an attempt to 

control the robot's tilt angle, position, and the length of its 

intermediate body (IB) and end-effector. Additionally, we 

will test the 5 DOF two-wheeled robot with linear 

actuators by introducing various input signals and 

disturbances. The purpose of these tests is to evaluate the 

robot's robustness and determine whether the control 

strategies are effective under different operating 

conditions. Simulink is a powerful tool that enables us to 

simulate the dynamics of the system and assess the 

performance of different control strategies. By using 

Simulink, we can develop an effective control system that 

ensures the stability, motion, and precision of the robot 

during its various tasks. 

A. PID Controller 

   PID (proportional integral derivative) controllers are 

among the most stable and accurate controllers used to 

regulate process variables. These controllers utilize a 

feedback loop mechanism to continuously adjust the 

control input based on the difference between the desired 

output and the actual output of the system [16]. 

The output of a PID controller at any given time t is 

determined by the following equation: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑
𝑑𝑒

𝑑𝑡
          (7) 

   where e(t) represents the tracking error, Kp is the 

proportional gain, Ki is the integral gain, and Kd is the 

derivative gain. In this section, five PID controllers are 

connected in a feedback system as shown in Fig. 5. 

MATLAB tuning is then used to adjust the PID gains until 

a good response is achieved. Table I shows the PID gains 

for each output, which are adjusted based on the 

performance of the system during testing. PID controllers 

are an effective control strategy for the two-wheeled robot 

with linear actuators. By using PID controllers along with 

MATLAB tuning, it is possible to achieve stable and 

accurate control of the robot's position, tilt angle, and the 

length of its intermediate body and end-effector. 

 

 

Figure 5. Feedback system with 5 PID controllers 

 

 
Table 2.  PID gains 

 P I D 

PID (dr) 22620 437100 270 

PID (dl) -2730 -510 12 

PID (th) 7500 28070 260 

PID (h1) 41 12.4 31 

PID (h2) -280230 -23127120 -833 
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B. Full-State Feedback System 

    When all state variables are continuously measured and 

fed back to the controller, it is known as a full-state 

feedback system. The state-space equations for this type of 

closed-loop feedback system are represented by equation 

(8): 

        �̇� = 𝐴𝑥 + 𝐵(−𝐾𝑥) = (𝐴 − 𝐵𝐾)𝑥                  (8) 
  𝑦 = 𝐶𝑥 

   where x is the state vector, A is the system matrix, B is 

the input matrix, K is the gain matrix, and y is the output 

vector represented by the matrix C x. The stability and 

performance of the closed-loop feedback system are 

determined by the location of the eigenvalues of the matrix 

(A-BK), which are equal to the closed-loop poles. In 

modern control design approaches for linear multiple-

input, multiple-output (MIMO) systems, many techniques 

have evolved from LQR (Linear Quadratic Regulator), 

which is a potent design methodology [17,18]. Figure 6 

shows a system with all-state output connected with gains 

matrix. The MATLAB lqr command is used to extract the 

gain matrix (K) value that will help to move the system 

poles and achieve desirable results. Although LQR is a 

powerful approach to control design, setting the values for 

Q and R (weight matrices for states and inputs) is still a 

tradeoff solution. Attempts will be made to modify the Q 

and R matrices to achieve the best response with minimal 

energy. 

 
 

Figure 6. System with full state feedback [19] 

C. PID plus LQR method 

    LQR with PID (Linear Quadratic Regulator with 

Proportional Integral Derivative) is a control strategy that 

combines two different control algorithms to achieve better 

performance in controlling a system. LQR is a state-space 

control technique that aims to minimize a cost function that 

expresses the system's performance criteria, while PID is 

a feedback control technique that adjusts the control output 

based on the error between the desired and actual values of 

the system's output. LQR is a robust and optimal control 

strategy that can handle system uncertainties and 

disturbances, but it can be computationally expensive and 

may not be suitable for real-time control applications. On 

the other hand, PID is a simple and widely-used control 

strategy that can provide fast and stable control of a system, 

but it may not be able to handle complex dynamics and 

disturbances. By combining LQR and PID, the resulting 

control strategy can take advantage of the strengths of both 

techniques and overcome their limitations. The LQR 

component of the control strategy provides an optimal 

control law that minimizes the cost function and takes into 

account the system dynamics and uncertainties. The PID 

component of the control strategy provides a fast and stable 

response to changes in the system output and can handle 

disturbances and noise. The LQR with PID control strategy 

is typically implemented by cascading the two controllers, 

with the LQR controller as the outer loop and the PID 

controller as the inner loop. The output of the LQR 

controller is used to set the desired setpoint for the PID 

controller, which adjusts the control output based on the 

error between the desired and actual values of the system 

output. The objective of the control strategy is to try to get 

the best results to track a path through the LQR method and 

the best results to change the lengths of intermediate body 

(h1) and end-effector (h2) through the PID controller. 

Figure. 7, shows the PID plus gain matrix connection. 

Table 2 shows the PID gains , matrix states and input 

matrix. 

 

 
Figure. 7. Control ssystem using PID with LQR strategy [19] 
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Table 3.  PID gains for intermediate body (h1), end-effector (h2) and 

(Q,R) matrixes 
 P I D  

PID (h1) 1890 2700 110 

PID (h2) 0 230 0 

Q diag[1000 1000 1000 10 1000 1  1  1  0.2  1] 

R [0.1   0.1    0.1   0.01] 

V. SIMULATION  RESULTS   

     To further evaluate the performance of the controllers 

in the two-wheeled robot with linear actuators, a different 

set of input signals will be used. Table 3 shows the shape 

and description of each signal used in the scenarios. The 

results of each scenario will be represented by a number in 

all controllers. To compare the performance of the 

controllers, the control effort E will be calculated. The 

control effort refers to the amount of energy or power 

required by the controller to perform its intended task. By 

calculating the control effort, it is possible to determine 

which controller is most efficient in achieving the desired 

performance [19, 20].    

                         𝐸 = ∫𝑈2(t) 𝑑𝑡                                   (9) 

 
Table 4. Description of the signals Scenarios 

Scenario 

number 
Description of the signal 

I 
A disturbance signal, an impulse signal, is a push 

signal for the system.  

II 
The disturbance signal varies by increasing the number 

of impulses at different time by different amplitude.  

III 
Input signal increases IB length (h1), length increases 

from 0m to 0.1m. 

IV 
The length of the IB (h1) changed from 0.1 m to 0.3 m 

in 5 sec. 

V 
Change the end-effector (h2) length from 0 m to 0.005 

m. 

VI 
Input signal increases end-effector (h2), length 

increases from 0.1m to 0.15m in 5 sec. 

VII A change in the robot position by adding ramp signal 

IX A change in the robot position by sin wave signal 

A. Simulation results of  PID  

   Scenario I: Figuge. 8 shows that all robot outputs are 

affected by disturbers signal (push) but it can be observed 

that all output take a short time until reaches set-point, 

except the left wheel (dr) is tack a long time. 

Scenario II: Figure. 9, even an increase in disturbance 

signals and putting it at different times does not 

significantly affect a robot output except the left wheel (dr) 

which still takes long time to reaches set-point 

Scenario III: A change in the length of the IB (h1) is 

observed from Figure. 10 this change does not affect the 

other output, also observed that h1 has a higher response, 

as it moved from 0m to 0.1m and settled in a 0.1m Within 

a short time. 

Scenario IV: In Figure. 11, the system still conserves the 

output results even if the h1 value changes from 0.1 to 0.3 

 Scenario V:  Figure. 12 it can be seen that the robot has a 

number of changes, not considered large in the output angle 

(th) and right wheel (dr), but considered large on the left 

wheel (dl) where the value is far from required and become 

unstable, which made the robot orbiting itself (and the 

center of rotation Is the right wheel). It is also observed that 

the robot’s IB (h1) was not affected due to a change in the 

length of the end-effecter (h2), and is also noted that the 

end-effecter is stable, where it moves to 0.05m and settles 

in a short time. 

Scenario VI: From Figure. 13 it has been observed that 

even with the change of the end-effect length, the end-

effect output remains stable as it moves from 0.1 to 0.2 

within a short time, also the left wheel is affected by the 

increase causing the system is unstable. 

Scenario VII: In this scenario it can be noted from Figure. 

14, that the robot follows the path well in the right wheel 

(dr), but the left wheel (dl) starts with a high value and then 

take a long time to reach the desired value. Also, it has been 

noted that h1 and h2 were not affected by a change, and the 

angle took time to settle at set-point.  

Scenario VIII: In Figure. 15, it can be observed that the 

same problem in the left wheel is still, and it is noted that 

the results of the right wheel and E and B is still good, and 

the reason for the instability of the angle is due to the 

constant movement of the robot. 

 
 

Figure 8. Robot Response Using the PID Controller (Scenario I) 

 

 
Figure 9. Robot Response Using the PID Controller (Scenario II) 
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Figure. 10. Robot Response Using the PID Controller (Scenario III) 

 

 
 

Figure. 11. Robot Response Using the PID Controller (Scenario IV) 
 

 
            Figure 12. Robot Response Using the PID Controller (Scenario V) 

 

                 Figure 13. Robot Response Using the PID Controller 

(Scenario VI) 

 

Figure 14. Robot Response Using the PID Controller (Scenario VII) 

Figure 15. Robot Response Using the PID Controller (Scenario VIII) 
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B. Simulation results of  LQR  

Scenario I: Figure. 16 shows that all robot outputs are 

affected by disturbers signal (push) but it can be observed 

that all output take approximately 1 sec until reaches set-

point.  

Scenario II: The results from Figure. 17, are close to those 

of the first scenario (I) however, the disturbance signal was 

introduced at different time. 

Scenario III: From Figure. 18, it has been noted that the 

system was not significantly affected due to a change in the 

length of h1, and also the change of length of h1 was in a 

short time. 

Scenario IV: The same results obtained in the third scenario 

(III) are seen in Figure. 19. 

Scenario V: From Figure. 20, it can be noted that the system 

has had several problems due to the introduction of a signal 

to change the length of end-effector (h2), and this signal 

affected all outputs, but did not change the length of h2. 

Scenario VI: In Figure. 21, the same problem is observed 

in the fifth scenario (V). 

Scenario VII: From Figure. 22, it has been noted that the 

robot is good in terms of tracing the path with a slight delay 

between the input and output signals, and it can be 

identified that there is harmony between the two wheels 

right (dr) and left (dl). The tilt of the robot angle (th) is due 

to the continuous movement of the robot. The change in the 

length of h2 is considered problem and it can be noted the 

IB (h1) output has small error. 

Scenario VIII: From Figure. 23, it has been seen that the 

angle instability is due to the backward and forward 

movement of the robot, and it can note h1 and h2 output 

were affected. 

 
Figure 16. Robot Response Using the LQR Controller (Scenario I) 

 
 

 

 
 

 

 
 

 

 

 

 
                Figure 17. Robot Response Using the LQR Controller 

(Scenario II) 

 

 
 

Figure 18. Robot Response Using the LQR Controller (Scenario III) 

 

Figure 19. Robot Response Using the LQR Controller (Scenario IV) 
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Figure 20. Robot Response Using the LQR Controller (Scenario V) 
 

 

Figure 21. Robot Response Using the LQR Controller (Scenario VI) 

Figure 22. Robot Response Using the LQR Controller (Scenario VII) 

 

 
Figure 23. Robot Response Using the LQR Controller (Scenario VIII) 

 

C. Simulation results of  LQR with PID 

Scenario I: In Figure. 24, it can be observed that the 

disturbance signal affected the robot, where the output IB 

(h1) takes approximately 1 sec to reach set-point, and the 

rest of the outputs required approximately 3 sec to reach 

set-point. 

Scenario II: It can be noted from Figure. 25, that the robot’s 

results are the almost the same as in the first scenario but 

disturbance signal was introduced at different time. 

Scenario III: In the figure. 26, it has been shown that a 

change in the length h1 affected dr and dl output. The 

change in right wheel (dr) and left wheel (dl) output was in 

opposite direction which caused the robot angle return to 

set-point in approximately 1 sec. The end-effector (h2) 

output of the robot has minimally been affected by change 

in h1 length and return to set-point in approximately 1 sec, 

and also it can be noted that h1 output has a fast response. 

 Scenario IV: It can be seen from Figure. 27, that the two 

wheels are affected by a change in the length of the h1. It 

can be seen that the change in the two wheels and the tilt 

of the angle (th) is still close to the results of the previous 

scenario but in different time. The output of h2 in the first 

seconds the same as the third scenario, after 5 seconds the 

response was similar to the third scenario but with more 

length. It can be seen that output of h1 has a fast response.  

Scenario V: Figure. 28, shows that the robot was affected 

by the change of the length of end-effector (h2). This 

change of the length caused the two wheels to move at a 

distance of up to -0.1m. This movement of the wheels had 

small impact on the robot angle (th) with a value 

approximately -0.05 rad. The output of IB (h1) is close to 

the set-point (zero). The h2 response is acceptable because 

within 3 sec it reaches the set-point. 

Scenario VI: From Figure. 29, it can be seen that the right 

and the left wheels show an increase in the distance 

towards the negative side from the set-point. This 

movement of the wheels caused the angle to tilt towards 

the negative side. The output of h1 is very close to the set-
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point. The h2 output is still as good as the response in the 

fifth scenario. 

Scenario VII: From Figure. 30, it has been noted that the 

robot is acceptable in terms of tracing the path. It can also 

be identified that there is harmony between the two wheels 

right (dr) and left (dl). There is a very slight tilt in the angle 

(th) in the first few seconds and the angle become 

approaching zero. It is observed that there is a change in 

the length of h2 in first few second and then the length 

become settling close to zero. The IB (h1) length showed 

insignificant change in the length (approaching zero).  

Scenario VIII: Figure 31. It can be observed that the robot 

still has acceptable result in terms of tracing the path as in 

the eighth scenario. The tilt of the robot angle is logic, it is 

due to continuous movement of the robot. The IB (h1) 

length showed insignificant change in the length 

(approaching zero). The h2 output showed changes in its 

length due to robot movement. The tabulated results in 

Table 3 displayed summarizes a comparison between all 

the control strategies by the values of rise time, settling 

time, and peak time. In general, the PID with LQR 

produces much better system performance. Also, PID with 

LQR give the best control effort as presented in Figure. 32.  
 

 
 

Figure 24. Robot Response Using the LQR with PID (Scenario I) 

 

 
 

Figure 25. Robot Response Using the LQR with PID (Scenario II) 

 
Figure 26. Robot Response Using the LQR with PID (Scenario III) 

 

 

Figure 27. Robot Response Using the LQR with PID (Scenario IV) 

Figure 28.Robot Response Using the LQR with PID (Scenario V) 
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Figure 29. Robot Response Using the LQR with PID (Scenario VI) 

 

Figure 30. Robot Response Using the LQR with PID (Scenario VII) 

 
Figure 31. Robot Response Using the LQR with PID (Scenario VIII) 

 

a. PID control effort 

 

  
b. LQR control effort  

c. LQR with PID control effort 

Figure 32(a-c). Control effort for different controllers 
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VI. CONCLUSION  

    The importance of effective control strategies for 

achieving optimal performance and safety in complex 

mobile robots is demonstrated in different scenarios. 

These strategies can ensure that the robot moves and 

interacts with its environment in a natural and safe way, 

maintains stability and balance while moving over 

complex terrain, coordinates the actions of individual 

robots in a swarm, and navigates through complex 

environments while avoiding obstacles. However, PID 

controller tuning with the MIMO system can be a 

significant challenge since it is a SISO controller. This 

investigation encountered the same issue when tuning a 

PID controller using MATLAB. The results showed that 

when the robot was controlled by a PID controller, there 

was no coordination between the two wheels to help the 

robot follow the path, resulting in poor performance. To 

resolve this issue, the LQR approach was applied which 

showed that every input had an impact on every output. As 

a result, the set point was not reached, and errors were 

large or tiny for the different outputs. To overcome these 

issues, this robot was controlled using a combination of 

PID with LQR methods. Although all inputs still have an 

impact on all outputs, the final results were better than 

expected. The idea of combining the two controllers (LQR 

with PID) resulted in fair energy consumption, good path 

tracking, and a responsive IB and end-effector. The 

findings were acceptable and outperformed PID 

controllers and the LQR approach in terms of the tilt of the 

robot angle. 
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