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A taxonomy of Collective Machine Learning 

Models applicable to well logging predictive 

anticipation 

 

Abstract—Traditional methods of measuring well logs are 

expensive, error-prone and time-consuming, which has led 

to the development of machine learning models that can 

predict well logging based on well-log data. This study aims 

to determine the most effective machine learning models for 

predicting of well logging based on available well-log data. 

The study covers a detailed explanation of the data-

gathering and pre-processing techniques used.  

 Features were used in the models, namely gamma ray (GR), 

bulk density (RHOB), neutron porosity (NPHI), resistivity 

(RT), spontaneous potential (SP), trained and evaluated 

based on their performance, namely linear regression, 

support vector machine SVM, Neural Network NN and 

decision Trees DT models. The models were evaluated based 

on their Mean Squared Error, R squared, Mean Absolute 

Error and RMSE values. Our results showed that the 

Decision Trees (DT) for MSE value of 10.86, achieving a 

Root Mean Squared Error (RMSE) value of 3.29, MAE 

value of 2.225 and R square value of 0.59. These findings 

suggest that machine learning models can be a powerful tool 

for predicting of best training from well-log data, in 

particular, holds great promise for future modelling efforts 

in this area.  

 

Index Terms— Machin learning, Well logging, Training 

Data, Predication, RMSE, MSE, MAE, R square. 

I. INTRODUCTION 

any real-world situations might benefit from the use 

of machine learning (ML) approaches due to recent 

advancements in ML and rising computational capacity. 

With its abundance of data, the petroleum sector is well-

positioned to take advantage of these strategies and provide 

major benefits. The measurements of physical attributes that 

are obtained during the drilling of exploratory boreholes and 

documented in well logs sequential recordings of features 

collected at regular depth increments usually make up the 

accessible data. 
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The features of the surrounding geology are inferred from 

the well logs using a variety of modeling methods. In the 

end, these help with commercial decision-making about 

the well's further development or the development of 

whole oilfields, depending on the hydrocarbon content 

estimate. 

Well log interpretation is a time-consuming and costly 

process that transforms raw data into information that is 

useful to the commercial world. It calls for a large 

amount of human labor as well as a high level of skill and 

experience. Inaccurate hydrocarbon content estimation 

also has a big financial impact as it can lead to lost 

chances or high drilling expenses for a producing well 

with poor hydrocarbon return. 

The well logs, which are inherently noisy and imperfect, 

include raw measurements taken with a variety of 

instruments. Petro-physicists were assigned the duty of 

correcting incorrect readings and guessing missing data in 

order to "condition," or clean, the well logs. Only once 

this has been completed, they can proceed with the 

interpretation of the rock properties. 

For a Petro-physical assessment of subsurface 

hydrocarbon-bearing formations, a number of logs are 

needed, including resistivity (RACEHM, RACELM, RD, 

RM, RPCEM, RPCEM, RT), density (RHOB), self-

potential (SP), sonic (DT), gamma ray (GR), neutron 

(NPHI), resistivity (CALI), and so on. These fundamental 

logs may be used to estimate reservoir thickness with 

fluid, water saturation, clay volume, grain size, porosity, 

and borehole diameter. 

In this study, we determine the relationships among 

several physical characteristics measured within a 

borehole using supervised machine learning approaches. 

One of these attributes is then used as a dependent or 

target variable, while the other attributes are used as 

independent or input variables. Each well log record 

corresponds to a single observation, and we use a subset 

of these observations to train the models while keeping an 

evaluation-ready disjoint set. We only use data if the 
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desired attribute has been recorded for training and 

evaluation purposes, utilizing the measured value as the 

ground truth. Petro-physicists will no longer need to label 

the data in advance, and our theory is that this will lead to 

more consistent data values and prevent human 

intervention. 

A.  Previous studies 

Pan, Tan, and Hu (2009) developed a mathematical 

model and numerical method for analyzing spontaneous 

potential logs in heterogeneous formations [7]. Gąsior 

and Przelaskowska (2014) estimated thermal conductivity 

from core and well log data. Their work provided 

methods for better thermal conductivity estimation, 

crucial for various geological and engineering 

applications [12]. Khisamutdinov and Banzarov (2015) 

addressed mathematical modeling issues related to pulsed 

neutron-gamma logging [10]. Zhang, Chen, and Meng 

(2018) utilized Recurrent Neural Networks (RNNs) to 

generate synthetic well logs [8]. Kerimova (2019) applied 

mathematical techniques and integrated well logging data 

to classify oil-gas bearing targets based on their 

saturation features and facies composition in her study. 

Her research contributed to more accurate classification 

of hydrocarbon-bearing targets [11]. Ahmadi and Chen 

(2019), identified the most accurate models for these 

predictions, contributing to better resource estimation in 

oil reservoirs [3]. 

Nordloh, Roubícková, and Brown (2020) discussed the 

application of machine learning techniques in gas and oil 

exploration and, this study provided a broad overview of 

how machine learning can be utilized in exploration 

activities, emphasizing its potential in improving 

exploration efficiency [4]. 

Joshi et al. (2021) in their study applied various machine 

learning techniques to predict sonic logs and correlate 

lithology using geophysical well log data [1].  

Talebkeikhah, Sadeghtabaghi, and Shabani (2021), this 

research compared different machine learning models for 

predicting permeability in hydrocarbon reservoirs using 

well log data, showcasing the relative performance of 

various approaches [2]. Ullah et al. (2023) presented a 

multidisciplinary approach to facies evaluation at a 

regional level in their study. This study combined well 

log analysis, machine learning, and statistical methods to 

enhance regional facies evaluation [6]. Rashidi et al. 

(2023) discussed common statistical concepts in 

supervised machine learning, including those in well 

logging [13]. Rahmati, Zargar, and Tanha (2024) in their 

comparative study, their research identified the most 

effective methods for this prediction task [5]. 

 

     THE BASIC CONCEPTS 

The basic concepts related to the paper that will help us to 

understand and comprehend the paper very well. 

A.    Machine Learning 

Using a collection of existing training data, supervised 

machine learning (ML) automatically determines a 

functional link between input and output variables. Each 

input comprises an ordered vector of values, referred to 

as independent variables or features, that characterize 

different aspects of the issue. Through the evaluation of 

the learnt function across the input vector, the output 

values also referred to as dependent or target variables are 

predicted [5]. 

Regression is used for goals with a continuous, possibly 

infinite domain, whereas classification is used for targets 

where the target values constitute a (often small) finite 

set. This distinction is based on the domain of the target 

variables. 

We used neural networks, Support Vector Machines and 

gradient tree boosting as two regression models to 

approximate the missing data in the logs. Both models are 

essentially different, even though they both take a vector 

of characteristics as input and output a goal value. 

A neural network (NN) is made up of many layers, each 

of which has a variable number of neurons. 

 A neural network with one hidden layer is shown in 

Figure 1, and the network's exact design is determined by 

the issue it is meant to solve. Each neuron shown in 

Figure 2, the first input layer represents a single value 

from the input vector. In the training phase, these weights 

are learnt. The values of neurons in subsequent layers are 

computed as a weighted sum of their predecessors 

modified by an activation function.  

The last layer, called the output layer, shows the inferred 

value, which is derived from the vector of features 

supplied to the network, the activation functions (which 

specify a node's output based on its input), and the 

weights. At a neuron's output, the activation function 

serves as a decision-making body [8]. Based on the 

activation function, the neuron learns either linear or non-

linear decision limits. Additionally, because of the 

cascading effect, it exerts a leveling impact on neuron 

output, preventing neurons' output from growing 

excessively big after several layers [6]. 

 Neural networks can detect complex patterns in 

extremely non-linear data sets, such as well logs, since 

the activation function does not have to be linear to its 

parameters. 

 
Figure 1: Neural Network with one hidden layer (3 neurons) 

 
Figure 2: a neuron showing the input (x1-xn), their corresponding 
weights(w1-wn), a bias (b) and the activation function (f) applied to the 

weighted sum of the input.  
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Gradient Boosting is an ensemble learning technique that 

builds a powerful prediction model by combining several 

weak prediction models, often decision trees. Regression, 

classification, and ranking issues are just a few of the 

fields in which it has been effectively employed in 

machine learning. They frequently perform better than 

other conventional models and are strong algorithms for 

handling intricate forecasting jobs. 

 
Figure3: The first tree (T) is a decision tree providing a rough 

estimation of the value to be predicted. The second tree (Te1) predicts 

and corrects the error of T, leading to a reduced overall error [4]. 

 

The accuracy of these regression decision trees is 

severely constrained since they can only reliably forecast 

the values that are represented by their leaves. Gradient 

Tree Boosting gets around this restriction by building an 

ensemble of trees, as shown in Figure 3, where each tree 

that follows after the first corrects the error of the one 

before it, improving the prediction until the error 

converges or the model begins to overfit. 

B.   Well Logging  

Nowadays, advanced and modern techniques of Well 

logging are considered extremely useful for subsurface 

formation evaluation and fluid properties predictions. 

Various logs required for a petrophysical evaluation of 

subsurface hydrocarbon-bearing formations are Caliper 

(DCAL, MCAL), Delta Rho (DROR), Gamma Ray (GR), 

Neutron Porosity (RHOC, CNLS), Density (RHOB), 

Spontaneous Potential (SP), Resistivity (RLL3, RILD, 

MI, MN, RxoRT), etc. 

 
Figure 4: Details of the primary type of well logs used in the 

Exploration and Production (E&P) industry [1]. 

 
 

II.   THEORETICAL BACKGROUND 

Basic ideas and techniques form the theoretical basis for 

an extensive comparative analysis of several machine 

learning models in well log prediction and evaluation [4]. 

An important component of subsurface exploration is 

well logging, which procedures a variety of 

characteristics of rocks and fluids, as well as gamma-ray, 

resistivity, porosity, and acoustic logs [9]. By analyzing 

the physical and chemical characteristics of the materials 

that make up the Earth's subsurface, the field of 

petrophysics is important to the interpretation of well log 

data. Regression models such as support vector 

regression, decision tree regression, and linear regression 

are frequently used in supervised learning to make 

predictions, whereas classification models are used to 

handle discrete outcomes such as petrology classes [13]. 

Log transformations and depth-related features are two 

feature engineering strategies that improve the model's 

capacity to represent geological patterns. 

Normalization, scaling, and filling in missing data are 

examples of data preprocessing procedures that guarantee 

the constancy of machine learning algorithms, various 

complexities in geological datasets in [4] are 

accommodated by model selection procedures such as 

decision trees, support vector machines, and neural 

networks. While classification metrics calculate accuracy, 

precision, recall, and F1-score for classification tasks, 

evaluation metrics like Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and R-squared assistance 

analyze prediction accuracy [3]. By dividing the dataset 

into many folds, cross-validation techniques such as K-

Fold Cross-Validation ensure robust model evaluation 

[12-13]. The models are further refined through ensemble 

approaches, hyperparameter tuning, and concerns for 

interpretability and integration of domain knowledge. 

Specialized strategies are needed to address imbalanced 

data, particularly in situations where certain lithologies 

are less common. investigation. 

III. METHODOLIGY AND INTERPERTAION  

The paper focused on analysis of well log data using 

various ML approaches forms the basis of the current 

work. The utilized data sets were gathered from the 

Kaggle website's open-sourced inventory. Excel format is 

used to see the log data. The header includes the 

fundamental data, such as the name of the well and the 

depth measurements of the borehole's beginning and 

finish. CALI, GR, RHOB, DT, NPHI, and RT are the 

different logs that were utilized to build the inventory. A 

range of methodologies are employed to identify any 

absent numbers, comprehend the distribution of the data, 

and present the accessible data visually. 

This study aims to following key challenges: 

The aim to Evaluate and compare the performance of 

various machine learning models, such as linear 

regression, decision trees, support vector machines, 

neural networks, and ensemble methods, in predicting 

well log properties. 

The first, Data Collection by collect a various and dataset 

of well logs containing geological formations and 

confirm the addition of relevant well log properties such 
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as Gamma-ray, Porosity, Resistivity, and Permeability 

and Data Preprocessing or cleaning by clean the dataset 

by handling missing values, and any discrepancies. 

 The next, Model Selection by take a set of various 

machine learning models for comparison, including linear 

regression, decision trees (DT), support vector machines 

(SVM), neural networks (NN) and apply Model Training 

by train each selected machine learning model using the 

training set, and Optimize model hyperparameters, the 

last, Model Evaluation by assess the models on the 

testing set using suitable metrics (e.g., mean squared 

error, R-squared) to measure predictive performance. 

IV. MATHMATICAL MODELLING 

The literature on numerical techniques and error analysis 

for the SP log issue, such as the numerical mode 

matching (NMM) approach and finite element method 

(FEM), is extensive since SP log is a crucial technology 

in petroleum extraction [10]. The NMM approach is 

significantly simpler than the FEM method [7]. 

 As demonstrated in described [7] by equation  
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Where: 

   is the radius of the well, 

   is the radius where the half of the transition from    to 

   occurs, and 

 N is directly related to the slope of the transition. 
   is the well bore filled with mud,    is the enclosing 

rock, and    is the objective layer which contains the 

invasion zones. 
 

 It is difficult to generalize in order to solve the SP log 

issue for the scenario in which the formation resistivity R 

relies on r as shown in equation (1). But FEM is a more 

precise approach than NMM. 

A.    Difference schemes in subdomains 

Since the resistivity in each subdomain    (         )  

depends only on  , let   =    (  ), we use the standard  

5-point scheme [7]: 
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B.   Difference schemes on interfaces 

Just the difference scheme on the horizontal interface, 

            , needs to be taken into account. For the 

vertical interface,       , a similar process may be 

followed.  

Let the resistivities above and below the interface 

          be denoted by    and   , respectively.  

Utilizing the close-to-interface local Taylor expansions, 

we arrive at [7] 
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From (3) and (4) it is obvious that 
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Thus, the resulting coefficient matrix of the finite 

difference method is symmetric and positive definite as 

shown in equation (5). The matrix can be inverted using 

common acceleration techniques like multigrid and 

preconditioned conjugate gradient (PCG) algorithms. 

V. METRICS FOR MODEL EVALUATION 

Define evaluation measures according to the type of task 

being predicted. Metrics like Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), R Square (  ) and 

Mean Absolute Error (MAE) are frequently employed for 

regression jobs [13]. 

TABEL 1.    DESCRIBE OF MSE, R SQUARE, RMSE AND MAE 

A. Data Features 

These data features collectively contribute to the 

interpretation of subsurface geological conditions and are 

vital for reservoir characterization in the oil and gas 

industry [11]. Machine learning models can be trained 

using these features to predict and evaluate well logs, 

Statistic Description 

RMSE 

Root mean squared error. The RMSE is always 

positive and its units match the units of your 

response. 

 
R-Squared 

 
Coefficient of determination. R-squared is 

always smaller than 1 and usually larger than 0. 

It compares the trained model with the model 
where the response is constant and equals the 

mean of the training response. If your model is 

worse than this constant model, then R-Squared 
is negative. 

MSE 
Mean squared error. The MSE is the square of 

the RMSE. 

MAE 
Mean absolute error. The MAE is always 
positive and similar to the RMSE, but less 

sensitive to outliers. 
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facilitating more efficient and accurate decision-making 

in exploration and drilling operations [9]. 

DEPTH .FT   :1 Depth 

DCAL  .IN   :2 Caliper( Caliper – Density) 

MCAL  .IN   :3 Caliper( Caliper – Sonic) 

DROR.G/CC   :4 Drho (Delta Rho) 

MN . OHMM   :5 Res(Resistivity Wide arry) 

GR .GAPI    :6 Gamma Ray (Gamma Ray)  

RxoRt .OHMM :7 Res(Ratio of shallow and deep  

resistivity in well) 

RILD .OHMM  :8 Deep Res(Deep Induction  Standard 

Processed Resistivity)        

MI .OHMM    :9 Med Res(Medium Induction  Standard 

Processed Resistivity) 

RLL3 .OHMM  :10 Shal Res( Latero-Log 3) 

CNLS.V/V    :11 Neutron(Neutron Porosity)  

RHOC.V/V    :12 Neutron(Neutron Porosity)  

RHOB .G/CC  :13 Density(Bulk Density) 

SP .MV      :14 SP(Spontaneous Potential) 

 
Figure5: display some of data features 

VI. RESULTS AND DISCUTION 

The regression leaner and classification leaner train 

models to predict data. we used training to search for the 

best regression model type, including linear regression 

models, regression trees, Gaussian process regression 

models, support vector machines, ensembles of 

regression trees, and neural network regression models. 

The regression learner performs hyperparameter tuning 

by using Bayesian optimization. The goal of Bayesian 

optimization, and optimization in general, is to find a 

point that minimizes an objective function a point is a set 

of hyperparameter values, and the objective function is 

the loss function. 

Machine learning models can be trained using features to 

predict and evaluate well logs, facilitating more efficient 

and accurate decision-making in exploration and drilling 

operations by using MATLAB R2022a.  

TABEL 2.   DESCRIBE THE MEASUREMENTS OF MSE, R SQUARE, 

RMSE AND MAE 

 
REGRESSION 

TREE 

LINEAR 

REGRESSION 

WIDE 

NEURAL 

NETWORK 

MSE 11.2 53.6 12.3 

R SQUARE 0.91 0.59 0.91 

RMSE 3.34 7.32 3.59 

MAE 2.280 5.661 2.500 

 

 

 

A.  The Regression Leaner 

 

1- Regression Tree (Model 1) 

 
Figure 6: prediction of data. 

 
Figure7: true and predicted data 

 

2 -  Liner Regression(Model 2) 
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.8 erug F :augd fr to tc dprp  

 
Figure 9: true and predicted data. 

3 -  Wide Neural Network (Model 3) 

 
Figure 10: prediction of data. 

 

 
Figure 11: true and predicted data. 

TABEL 3. DESCRIBE THE MEASUREMENTS OF OPTIMIZABLE MSE, 

R SQUARE, RMSE AND MAE 

 OPTIMIZABLE 

DECSION TREE 

OPTIMIZABLE 

SVM 

MSE 10.86 49.6 

R SQUARE 0.92 0.62 

RMSE 3.29       7.04 

MAE 2.225 4.121 

4 - Decsion Tree (Optimize DT) 

 
Figure 12: minimum MSE. 
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5 - Support Vector Machines ( Optimizable SVM) 

8 erug iF: minimum MSE 

 

In these models, the best  ugurer    validation that is  

Decision Tree then we make to test of this model and the 

result show in the follow figure 

 

 
Figure 14: prediction of data. 

Test Results for testing model   tc  Decision  eugg : 

RMSE(Test)            =1.244 

R-Squared(Test)      = 0.99 

MSE(Test)               =1.547 

MAE(Test)              =0.818 

     6 - Neural Network Fitting  

To access to training data by a neural network we assume 

training data =70% and validation data= 15% and Test 

data=15% r , he performance plot as show in figur .g i1  

 
8 erug i5: best validation performance. 

 
B.  Classification   rgpuogu  

 

eg rugd r g up g  tdgeu r pr rugd  o  geugpr to rgpuog 

pod fpefreprg  effrupf  r pr cpu r g  gur ugurer tc 

affrupfg  g rpe rt   .Fu c go paae ing  r g  tdgeu tc  

 gf u to eugg pod eoug  eg fepuu c guunapeegd eugguce 

aetr ftocr to hpru   pu u tco  o c erugu 

 
F erug i6:  ftocr to  pru   tc  gf u to eugg pod effrufg =  .Fu  

 

 
F  erug i7 :  ftocr to  pru   tc  grupe  grctuN pod effrufg =  .iu  
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F  erug iF: ftocr to  pru   tc MVh pod effrufg = F.iu  

cg fpefreprg tc eot pe   grgfr to ru oe grfe dgpo 

d urpofg ctu ufprrgu aetr rt i ure tg r g ferurgue  gpo pod 

ogc up aeg pu u tcgo  o cteetc c ergu i  

 
Figure 19: Anomaly detection using Euclidean distance.  

 

CONCLUSION 

Finally, in an effort to get beyond the drawbacks of 

conventional measuring techniques including expense, 

inaccuracy, and time consumption, this study investigated 

the use of machine learning models for well logging 

prediction based on well-log data. The study concentrated 

on assessing the effectiveness of several machine learning 

models, including decision trees (DT), support vector 

machines (SVM), Neural Network (NN) and linear 

regression, using characteristics like gamma ray, bulk 

density, neutron porosity and resistivity.  

The decision trees (DT) model beat the other models 

during the assessment process, as evidenced by its mean 

squared error (MSE) value of 10.86, root mean square 

error (RMSE) value of 3.29, mean absolute error (MAE) 

value of 2.225, and R-squared value of 0.92. 

 e g  gur ugurer tc accuracy   o fepuu c fpr to egpuogu g rpe 

rt   .Fu c go  applying  r g  tdgeu tc   gf u to eugg 

pod eoug  eg fepuu c guunapeegd euggu,n . 

Based on the available well-log data, these findings 

demonstrate how effectively the DT model predicts well 

logging. 

The study's conclusions demonstrate the potential of 

machine learning models as effective instruments for 

forecasting well logging and determining which well-log 

data makes for the best training. The industry may gain 

from increased well logging forecast accuracy, efficiency, 

and cost-effectiveness by utilizing these models, which 

will eventually enhance decision-making procedures and 

maximize resource. 
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