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The Correlation Aspects of Software Development 

Actual Effort and the Effected Factors  

 

Abstract—estimating the effort of software development is 

the focus of attention of software engineers, as it allows 

developers to determine the resources needed for the 

software project from the beginning until the final delivery. 

In fact, the actual effort of the software development 

depends on a set of basic factors that affect it either 

positively or negatively. These factors vary depending on the 

type and nature of the software. A few studies have been 

conducted in order to consider these factors and their 

correlation to the actual effort. Most of these studies have 

used methods such as a survey or a questionnaire. However, 

these methods lack of inaccurate measurement due to the 

variation of participated experiences and skills. Today, the 

world have emerged artificial intelligence technologies in 

most of fields to obtain higher accurate and fast results. This 

research uses feature selection intelligent algorithms such as 

Generic Univariate Select, Mutual Information, and RelifF 

algorithms to determine the correlation of software actual 

effort with the effected factors through XGBoost machine 

learning library. The NASA data set and the common 

effected factors of COCOMO model has been selected to 

determine the factors with the strongest correlation and 

influence on the actual effort. Through the results of this 

research, it has been found that complexity factor has 

recorded the largest correlation coefficient followed by the 

size of the software. The relationship between factors has 

been noticed and this contributes to the importance of the 

effected factors consideration and perfect software 

management. 
 

Index Terms—software development, actual effort, effected 

factors, correlation, feature selection. 

I. INTRODUCTION 

o develop any software project, it is necessary to 

estimate the effort and time required to complete 

it. Estimating the cost of software development is 

considered to be an essential factor for the success of any 

software project [1, 2, 3]. it gives both the developer and 

the customer a clear picture of the project and the needed 

resources to develop it. Developers follow several models 

to get an accurate estimate of the cost. One of the most 

common model is COCOMO model [4, 5]. 

For estimating the effort, COCOMO relies on a group  
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of factors called effort multipliers (EM).  

These multipliers vary in value depending on the type and 

nature of the project under construction. It also depends 

on a set of parameters that take estimated values 

according to the COCOMO model. The software 

development effort is related to a number of factors that 

influence it. Each of these factors has certain values 

according to the regression analysis of the projects in 

COCOMO I data set [6]. Based on this data, an 

estimation of the effort has been evaluated using the 

COCOMO model. In fact, the estimation effort might be 

inaccurate according to the limitation of the model [5]. 

Various techniques have been used for software cost 

estimation with respect to the effected factors. Although 

these factors have been identified, there is an urgent need 

to clarify the extent of the relationship and correlation 

aspects between these factors and the actual effort, 

especially with the development of technologies and the 

adoption of artificial intelligence algorithms in this 

regard.   

 It is possible to adjust the values of these factors 

according to the type and nature of the software so that 

the developers can obtain an optimal estimate of the 

required effort. This paper aims to identify the correlation 

between the actual software effort and the effected 

factors. It also seeks to adapt intelligent feature selection 

algorithms XGBoost to obtain the most effected features 

in software development actual effort. The following 

section describes the related work and section III explains 

the research methods. Section IV describes the results and 

discussion and section V gives the conclusion of the 

paper. 

II. RELATED WORK 

The effort of software development is defined as the 

number of human resources required to complete the 

project in a certain time [1, 5]. This effort is estimated 

using some existing models which rely on the person-

hour unit or person-month units according to the tested 

dataset that have been used by the model. 

In view of previous studies, and with regard to 

identifying factors influencing effort estimation, a study 

has been conducted by Bryce [7] in order to find out the 
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estimation issues in software project management. He has 

developed a questionnaire to conduct a survey to find out 

the factors that impact the project. He has mentioned that 

the complexity is the most effected factors in software 

development effort with 100% agree followed by the staff 

characteristics with 75%. He has mentioned that the 

number of line of code is less important issue than the 

function point of code. He has also identified other issues 

which might effect in the project effort estimation. 

Another study has been conducted by Robert and his 

colleagues in order to identify the factors that affect the 

software development cost [8]. The study uses data from 

50 projects performed at one of the largest banks in 

Sweden to identify factors that have an impact on 

software development cost. Correlation analysis of the 

relationship between factor and software effort was 

carried out using ANOVA statistical test and regression 

analysis. They have found that the most impact factors 

are duration, consultants and project participants.  

The study [9] has conducted a survey to find out the 

important factors that affect the software development 

effort. a survey was conducted to consider the techniques 

for cost estimation. They have been found that function 

point method is the most common method for calculating 

the size and project complexity. The statistical tests were 

used to find out the most effected factors of project cost. 

Most studies have been carried out for cost estimation of 

software development and the effected factors, but uses 

statistical tests or systematic literature review [10]. 

Nowadays, an intelligent machine learning algorithms are 

used for identifying the effected factors and extract the 

features. These algorithms have the ability to predict the 

most effected features on the objective variable.   

Based on that, this research uses an intelligent machine 

learning model which is XGBoost model [11]. This 

model is a robust machine-learning algorithm that can 

help us understand the data and make better decisions. 

XGBoost is an implementation of gradient-

boosting decision trees. It has been used by data scientists 

and researchers worldwide to optimize their machine-

learning models. By leveraging the capabilities of 

XGBoost, this research presents a novel approach for 

understanding the correlation between software 

development actual effort and the effected factors, 

moving beyond the limitations of previous studies. 

III. RESEARCH METHODS 

This research adopts the NASA93 dataset [6] to select 

the features most closely related to the software 

development effort. The description of the dataset is 

described in the following section. 

A. The NASA Dataset 

The NASA93 dataset was collected by NASA from 

five of its development centers. It comprises 93 projects 

carried out between 1971 and 1987. The dataset consists 

of 24 attributes of which 15 are cost drivers, as the 

approach is based on that used in COCOMO81. The size 

attribute was measured in estimated lines of code 

(KSLOC). The dataset is available online for free as a 

Software Engineering Repository data set in order to 

encourage researchers to work for accurate cost 

estimation and improvable predictive models of software 

engineering. The NASA datasets have been used to assess 

how well evolutionary algorithms function. The 

dependent characteristic of effort is the number of man-

months needed to complete the project. The attributes 

have been divided into two categories according to 

COCOMO model. The first Category effects positively in 

the software development effort (target variable) as 

described in table I.   

TABLE I.  POSITIVE INCREASE FACTORS  

factor description 

acap analysts capability 

pcap programmers capability 

aexp application experience 

modp modern programming practices 

tool use of  software tools 

vexp virtual machine experience 

lexp language experience 

 

The second Category effects negatively in the software 

development effort (target variable) as described in table II. 

TABLE II.  NEGATIVE INCREASE FACTORS  

factor description 

stor main memory constraint 

data data base size 

time time constraint for cpu 

turn turnaround time 

virt machine volatility 

cplx process complexity 

rely required software reliability 

 

B. Statistical Analysis 

This study adopts the descriptive approach using 

statistical tests, which are the mean, average, and 

standard deviation, to obtain the correlation matrix, as 

shown in Fig. 1.  

A correlation matrix is an array table showing 

correlation coefficients between various variables. Each 

cell in the table shows the correlation between two 

variables. A correlation matrix uses Pearson’s Product-

Moment Correlation (r) to find out the correlations 

between variables. The reasons for computing a 

correlation matrix is to summarize a large amount of data 

where the goal is to see patterns. Moreover, researchers 

commonly use correlation matrixes as inputs 

for exploratory factor analysis, confirmatory factor 

analysis, structural equation models, and linear regression 

when excluding missing values pairwise. For dealing 

with missing values when computing correlation matrix, 

the multiple imputation has been used. 
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Figure 1.  The correlation matrix. 

According to the statistical analysis, it has been noticed 

that the program size was the most highly correlated with 

effort, at 68%, which makes sense because in most 

software, the more complex the program size, the more 

processing effort. It followed by the program complexity 

and time which reach up to 26%. The other factors' 

correlations are less than 10% .  

C. Machine Learning XGBoost 

XGBoost is an implementation of gradient-

boosting decision trees. It has been used by data scientists 

and researchers worldwide to optimize their machine-

learning models. It presents several advantages over 

traditional statistical methods. Firstly, it can 

automatically identify the most relevant features from the 

dataset, without the need for manual feature engineering 

or selection. Secondly, it can capture nonlinear 

dependencies between the factors and the target variable, 

which may be missed by linear regression models. 

Thirdly, it's relatively insensitive to noisy or outlier data 

points, making it more reliable for real-world datasets. 

Finally, the feature importance scores provided by it offer 

a clear and interpretable way to understand the relative 

impact of each factor on the target variable. 

XGBoost is based on gradient boosting, a technique 

where new models are trained to correct the errors made 

by existing models. It builds an ensemble of trees in a 

sequential manner. It starts by defining an objective 

function that needs to be optimized. In regression tasks, 

this objective function typically measures the difference 

between the predicted values and the actual target values 

to calculate the mean squared error or root mean squared 

error (MSE). It's designed to be highly efficient, both in 

terms of computation and memory usage. It employs 

several algorithmic optimizations to speed up the training 

process. For large datasets that don't fit into memory, 

XGBoost supports out-of-core computation, which allows 

for processing data in smaller batches.  

XGBoost uses a more advanced tree pruning algorithm 

compared to traditional gradient boosting. It uses a 

technique called "max depth" to control the complexity of 

the trees.XGBoost can handle missing values internally, 

without needing to pre-process the dataset. It learns the 

best imputation strategy during the training process. It 

can automatically handle missing values and zero entries 

in a more efficient manner to improve robustness and 

generalization. 

Despite regularization, XGBoost might overfit, 

especially if the number of trees is very large. Tuning the 

hyper parameters of XGBoost can also be complex and 

time-consuming.  

D. XGBoost Description 

The objective of this research is to develop a code that 

performs feature selection using various algorithms and 

evaluate the performance of an XGBoost regressor 

trained on the selected features. The code aims to identify 

the most informative features and assess their impact on 

the predictive performance of the regression model. The 

key components of the code are as listed below. 

 Data Preparation: the dataset is loaded, and 

features which is denoted by x and target variable 

which is denoted by y are separated. 

 Feature Selection Methods: a three feature 

selection methods are employed. They are Generic 

Univariate Select, Mutual Information, and 

ReliefF. Each method is applied to select the most 

relevant features from the dataset. 

 Model Training and Evaluation: the selected 

features using the three pervious methods are used 

to train the XGBoost model. The predictions are 

made on a holdout test set. Mean Squared Error 

(MSE) is computed to evaluate the model's 

performance. The code generates the importance 

of selected features and the performance of the 

XGBoost model. 

E. Generic Univariate Method 

Generic Univariate Select is a feature selection method 

that evaluates the importance of each feature 

independently using a univariate statistical test and 

selects the best features based on their scores. It uses the 

mathematical equation of Chi-Squared test as in statistical 

test.  

In Generic Univariate method, each feature is scored 

individually using a statistical test appropriate for the 

type of data and target variable. Common tests include 

ANOVA F-value for classification task, Chi-squared test 

for categorical data, and mutual information for both 

classification and regression. The features are ranked 

based on their scores. A predefined number of top-ranked 

features or those above a certain score threshold are 

selected. 

The advantage of Generic univariate method is 

effective, simple and fast as it evaluates each feature 

independently. It helps improving model performance by 

removing irrelevant features as a preprocessing step in 

machine learning pipelines to reduce the feature set. 

Particularly, Generic Univariate is useful in high-

dimensional datasets where many features are irrelevant. 

In the other side, it doesn’t consider feature interactions 

and may not perform well if important interactions 

between features exist. For these reasons, it's particularly 

useful in high-dimensional datasets where many features 

are irrelevant 

F. Mutual Information Method 

Mutual Information (MI) is a measure of the mutual 

dependence between two variables. In feature selection, it 

quantifies the amount of information obtained about one 
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variable through another variable, thereby identifying the 

relevance of features in predicting the target variable. It 

measures the reduction in uncertainty of one variable 

given the knowledge of the other. For feature selection, it 

calculates the MI between each feature and the target 

variable. In this method, features are ranked based on 

their MI scores and the top-ranked features based on MI 

scores are selected. MI is able to capture any kind of 

dependency between variables, not just linear 

correlations, but it involves intensive computation, 

especially for large datasets. 

G. ReliefF Method 

ReliefF method is an extension of the Relief algorithm, 

which is a feature selection method designed to evaluate 

the quality of features by considering the differences 

between neighboring instances. It is particularly effective 

for identifying features that are important for 

distinguishing between instances that are similar in 

feature space. It's effective for datasets with many 

irrelevant features. It also robust to noise and can handle 

missing data. Commonly, ReliefF method is used in 

bioinformatics for selecting relevant genes from 

microarray data. It's also suitable for problems where 

feature interactions are important and must be considered. 

Expensive computations are required by ReliefF method, 

especially with large datasets but it's suitable for 

problems where feature interactions are important and 

must be considered. 

IV. RESULT AND DISCUSSION 

This research uses the NASA93 dataset [6] to extract 

the features most closely related to the software 

development effort. It uses the statistical analysis tests to 

find out the correlation of effort and effected factors. The 

results indicate that the size of the program is most 

connected to the software effort. It also show that the 

complexity of the development software absolutely 

increases the software effort as described in Fig. 1. 

This research also measures the performance of three 

different feature selection techniques—Generic 

Univariate Select, Mutual Information, and ReliefF—

when used in conjunction with the XGBoost regressor 

algorithm. The performance is measured using Mean 

Squared Error (MSE), with lower values indicating better 

performance.  

First of all, the top ten features have been recorded 

using the three selected methods as described in table 3, 

4, and 5. The scores of each feature have been valued as 

described in the given tables respectively. The data 

descriptions of each table are visualized in Fig. 3, 4, and 

Fig. 5 respectively.   

 

TABLE III.  TOP TEN FEATURES USING GENERIC UNIVARIATE METHOD 

Factor/ 

Feature 
Feature's score 

KSLOC 49.85 

cplx 18.43 

time 15.27 

sced 9.58 

 stor 6.39 

data 6.26 

rely 5.78 

vexp 4.99 

acap 4.40 

virt 3.42 

 

 

 

Figure 2.   The results of Generic Univariate method 

The results of features selection using Generic 

Univariate method indicate that the size of code 

(KSLOC) is the strongest related feature with the target 

variable (actual effort) followed by software complexity 

and time constraint for CPU. The other features have less 

relationship with the target variable (actual effort). 

TABLE IV.  TOP TEN FEATURES USING MUTUAL INFORMATION 

METHOD 

Factor/ 

Feature 
Feature's score 

KSLOC 63.83 

aexp 21.83 

time 15.00 

data 13.50 

modp 11.41 

vexp 10.17 

tool 09.82 

rely 07.61 

turn 06.91 

acap 06.82 
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Figure 3.  The results of Mutual Information method 

The results of features selection using Mutual 

Information method indicate that the size of code 

(KSLOC) is also the strongest related feature with the 

target variable (actual effort) followed by application 

experience and time constraint for CPU. The other 

features have less relationship with the target variable 

(actual effort). 

TABLE V.  TOP TEN FEATURES USING RELIEFF METHOD 

Factor/ 

Feature 
Feature's score 

aexp 49.46 

KSLOC 45.32 

pcap 43.84 

time 43.17 

 lexp 42.93 

sced 41.09 

modp 37.42 

acap 36.51 

stor 43.68 

turn 34.26 

 

 

Figure 4.  The results of ReliefF method 

The results of features selection using ReliefF method 

indicate that application experience is the strongest 

related feature with the target variable (actual effort) 

followed by the size of the software code and 

programmers capability. It has been noticed that most 

features are very close effectively in the actual effort 

using ReliefF method. This suggests that the selected 

features have a stronger predictive power and that ReliefF 

is capturing important interactions and dependencies that 

the other methods miss. 

After evaluating the performance of each feature 

selection algorithm, the script plots a bar chart showing 

the mean squared error for each algorithm. Each bar is 

colored according to the corresponding feature selection 

method. Text labels displaying the error rate are added 

above each bar. Finally, a legend is created to distinguish 

between the algorithms as described in Fig. 5. 

 

Figure 5.  The comparison of the results of XGBoost model  

According to the obtained results, it has been noticed 

that the use of the XGBoost algorithm in this research 

presents a significant advancement over previous studies 

that have relied on traditional statistical methods. By 

automatically identifying the most influential features and 

assessing their relative impact, the XGBoost-based 

approach offers a more comprehensive and data-driven 

understanding of these complex relationships. 

The findings from the XGBoost analysis, which 

highlight the importance of factors such as complexity 

and size, provide valuable insights that can inform more 

accurate software development effort estimation models. 

Furthermore, the interpretability of the XGBoost feature 

importance scores can help software project managers 

make more informed decisions and prioritize the most 

critical factors during the development process. 

This research demonstrates the value of leveraging 

advanced machine learning techniques, such as XGBoost, 

to gain deeper insights into the factors influencing 

software development effort. By moving beyond 

traditional statistical methods, the study provides a novel 

and innovative approach that can contribute to the 

ongoing efforts to improve software project management 

and cost estimation practices. 

V. CONCLUSION AND FUTURE WORKS 

This research aims to find out the correlation of 

software development actual effort and the effected 

factors using the statistical tests and the artificial 

intelligent machine learning model which is XGBoost. 

This is to show that machine learning are more 

predictable and fast than the statistical tests.  
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Comparing the results of algorithms absolutely give 

insights into the consistency of feature importance 

rankings and the robustness of selected features.  

Features with high importance scores across multiple 

algorithms are likely to be strong predictors of the target 

variable and may warrant further investigation or 

prioritization in model development. These importance 

scores can guide feature selection, model interpretation, 

and decision-making in regression analysis, helping to 

identify the most influential factors affecting the 

predicted outcome (actual effort in this case). 

There are more other factors that might affect the 

software development effort. The consideration of these 

factors could be as a future work. Applying the same 

procedure to various dataset is also another plan. 
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