
 220 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

The Correlation Aspects of Software Development

Actual Effort and the Effected Factors

Abstract—estimating the effort of software development is

the focus of attention of software engineers, as it allows

developers to determine the resources needed for the

software project from the beginning until the final delivery.

In fact, the actual effort of the software development

depends on a set of basic factors that affect it either

positively or negatively. These factors vary depending on the

type and nature of the software. A few studies have been

conducted in order to consider these factors and their

correlation to the actual effort. Most of these studies have

used methods such as a survey or a questionnaire. However,

these methods lack of inaccurate measurement due to the

variation of participated experiences and skills. Today, the

world have emerged artificial intelligence technologies in

most of fields to obtain higher accurate and fast results. This

research uses feature selection intelligent algorithms such as

Generic Univariate Select, Mutual Information, and RelifF

algorithms to determine the correlation of software actual

effort with the effected factors through XGBoost machine

learning library. The NASA data set and the common

effected factors of COCOMO model has been selected to

determine the factors with the strongest correlation and

influence on the actual effort. Through the results of this

research, it has been found that complexity factor has

recorded the largest correlation coefficient followed by the

size of the software. The relationship between factors has

been noticed and this contributes to the importance of the

effected factors consideration and perfect software

management.

Index Terms—software development, actual effort, effected

factors, correlation, feature selection.

I. INTRODUCTION

o develop any software project, it is necessary to

estimate the effort and time required to complete

it. Estimating the cost of software development is

considered to be an essential factor for the success of any

software project [1, 2, 3]. it gives both the developer and

the customer a clear picture of the project and the needed

resources to develop it. Developers follow several models

to get an accurate estimate of the cost. One of the most

common model is COCOMO model [4, 5].

For estimating the effort, COCOMO relies on a group
ــ

Received 02 May , 2024; revised 08 May, 2024; accepted 15 Mar 2024.

Available online 08 Aug, 2024.

of factors called effort multipliers (EM).

These multipliers vary in value depending on the type and

nature of the project under construction. It also depends

on a set of parameters that take estimated values

according to the COCOMO model. The software

development effort is related to a number of factors that

influence it. Each of these factors has certain values

according to the regression analysis of the projects in

COCOMO I data set [6]. Based on this data, an

estimation of the effort has been evaluated using the

COCOMO model. In fact, the estimation effort might be

inaccurate according to the limitation of the model [5].

Various techniques have been used for software cost

estimation with respect to the effected factors. Although

these factors have been identified, there is an urgent need

to clarify the extent of the relationship and correlation

aspects between these factors and the actual effort,

especially with the development of technologies and the

adoption of artificial intelligence algorithms in this

regard.

 It is possible to adjust the values of these factors

according to the type and nature of the software so that

the developers can obtain an optimal estimate of the

required effort. This paper aims to identify the correlation

between the actual software effort and the effected

factors. It also seeks to adapt intelligent feature selection

algorithms XGBoost to obtain the most effected features

in software development actual effort. The following

section describes the related work and section III explains

the research methods. Section IV describes the results and

discussion and section V gives the conclusion of the

paper.

II. RELATED WORK

The effort of software development is defined as the

number of human resources required to complete the

project in a certain time [1, 5]. This effort is estimated

using some existing models which rely on the person-

hour unit or person-month units according to the tested

dataset that have been used by the model.

In view of previous studies, and with regard to

identifying factors influencing effort estimation, a study

has been conducted by Bryce [7] in order to find out the

Amarif, M., Awidat, F.,

Sebha University of Libya Sebha University of Libya

mab.imaref@sebhau.edu.ly fat.awidat@sebhau.edu.ly

T

mailto:mab.imaref@sebhau.edu.ly

 Amarif, M. and Awidat, F./ The Correlation Aspects of Software Development Actual Effort and the Effected Factors 221

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

estimation issues in software project management. He has

developed a questionnaire to conduct a survey to find out

the factors that impact the project. He has mentioned that

the complexity is the most effected factors in software

development effort with 100% agree followed by the staff

characteristics with 75%. He has mentioned that the

number of line of code is less important issue than the

function point of code. He has also identified other issues

which might effect in the project effort estimation.

Another study has been conducted by Robert and his

colleagues in order to identify the factors that affect the

software development cost [8]. The study uses data from

50 projects performed at one of the largest banks in

Sweden to identify factors that have an impact on

software development cost. Correlation analysis of the

relationship between factor and software effort was

carried out using ANOVA statistical test and regression

analysis. They have found that the most impact factors

are duration, consultants and project participants.

The study [9] has conducted a survey to find out the

important factors that affect the software development

effort. a survey was conducted to consider the techniques

for cost estimation. They have been found that function

point method is the most common method for calculating

the size and project complexity. The statistical tests were

used to find out the most effected factors of project cost.

Most studies have been carried out for cost estimation of

software development and the effected factors, but uses

statistical tests or systematic literature review [10].

Nowadays, an intelligent machine learning algorithms are

used for identifying the effected factors and extract the

features. These algorithms have the ability to predict the

most effected features on the objective variable.

Based on that, this research uses an intelligent machine

learning model which is XGBoost model [11]. This

model is a robust machine-learning algorithm that can

help us understand the data and make better decisions.

XGBoost is an implementation of gradient-

boosting decision trees. It has been used by data scientists

and researchers worldwide to optimize their machine-

learning models. By leveraging the capabilities of

XGBoost, this research presents a novel approach for

understanding the correlation between software

development actual effort and the effected factors,

moving beyond the limitations of previous studies.

III. RESEARCH METHODS

This research adopts the NASA93 dataset [6] to select

the features most closely related to the software

development effort. The description of the dataset is

described in the following section.

A. The NASA Dataset

The NASA93 dataset was collected by NASA from

five of its development centers. It comprises 93 projects

carried out between 1971 and 1987. The dataset consists

of 24 attributes of which 15 are cost drivers, as the

approach is based on that used in COCOMO81. The size

attribute was measured in estimated lines of code

(KSLOC). The dataset is available online for free as a

Software Engineering Repository data set in order to

encourage researchers to work for accurate cost

estimation and improvable predictive models of software

engineering. The NASA datasets have been used to assess

how well evolutionary algorithms function. The

dependent characteristic of effort is the number of man-

months needed to complete the project. The attributes

have been divided into two categories according to

COCOMO model. The first Category effects positively in

the software development effort (target variable) as

described in table I.

TABLE I. POSITIVE INCREASE FACTORS

factor description

acap analysts capability

pcap programmers capability

aexp application experience

modp modern programming practices

tool use of software tools

vexp virtual machine experience

lexp language experience

The second Category effects negatively in the software

development effort (target variable) as described in table II.

TABLE II. NEGATIVE INCREASE FACTORS

factor description

stor main memory constraint

data data base size

time time constraint for cpu

turn turnaround time

virt machine volatility

cplx process complexity

rely required software reliability

B. Statistical Analysis

This study adopts the descriptive approach using

statistical tests, which are the mean, average, and

standard deviation, to obtain the correlation matrix, as

shown in Fig. 1.

A correlation matrix is an array table showing

correlation coefficients between various variables. Each

cell in the table shows the correlation between two

variables. A correlation matrix uses Pearson’s Product-

Moment Correlation (r) to find out the correlations

between variables. The reasons for computing a

correlation matrix is to summarize a large amount of data

where the goal is to see patterns. Moreover, researchers

commonly use correlation matrixes as inputs

for exploratory factor analysis, confirmatory factor

analysis, structural equation models, and linear regression

when excluding missing values pairwise. For dealing

with missing values when computing correlation matrix,

the multiple imputation has been used.

 222 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

Figure 1. The correlation matrix.

According to the statistical analysis, it has been noticed

that the program size was the most highly correlated with

effort, at 68%, which makes sense because in most

software, the more complex the program size, the more

processing effort. It followed by the program complexity

and time which reach up to 26%. The other factors'

correlations are less than 10% .

C. Machine Learning XGBoost

XGBoost is an implementation of gradient-

boosting decision trees. It has been used by data scientists

and researchers worldwide to optimize their machine-

learning models. It presents several advantages over

traditional statistical methods. Firstly, it can

automatically identify the most relevant features from the

dataset, without the need for manual feature engineering

or selection. Secondly, it can capture nonlinear

dependencies between the factors and the target variable,

which may be missed by linear regression models.

Thirdly, it's relatively insensitive to noisy or outlier data

points, making it more reliable for real-world datasets.

Finally, the feature importance scores provided by it offer

a clear and interpretable way to understand the relative

impact of each factor on the target variable.

XGBoost is based on gradient boosting, a technique

where new models are trained to correct the errors made

by existing models. It builds an ensemble of trees in a

sequential manner. It starts by defining an objective

function that needs to be optimized. In regression tasks,

this objective function typically measures the difference

between the predicted values and the actual target values

to calculate the mean squared error or root mean squared

error (MSE). It's designed to be highly efficient, both in

terms of computation and memory usage. It employs

several algorithmic optimizations to speed up the training

process. For large datasets that don't fit into memory,

XGBoost supports out-of-core computation, which allows

for processing data in smaller batches.

XGBoost uses a more advanced tree pruning algorithm

compared to traditional gradient boosting. It uses a

technique called "max depth" to control the complexity of

the trees.XGBoost can handle missing values internally,

without needing to pre-process the dataset. It learns the

best imputation strategy during the training process. It

can automatically handle missing values and zero entries

in a more efficient manner to improve robustness and

generalization.

Despite regularization, XGBoost might overfit,

especially if the number of trees is very large. Tuning the

hyper parameters of XGBoost can also be complex and

time-consuming.

D. XGBoost Description

The objective of this research is to develop a code that

performs feature selection using various algorithms and

evaluate the performance of an XGBoost regressor

trained on the selected features. The code aims to identify

the most informative features and assess their impact on

the predictive performance of the regression model. The

key components of the code are as listed below.

 Data Preparation: the dataset is loaded, and

features which is denoted by x and target variable

which is denoted by y are separated.

 Feature Selection Methods: a three feature

selection methods are employed. They are Generic

Univariate Select, Mutual Information, and

ReliefF. Each method is applied to select the most

relevant features from the dataset.

 Model Training and Evaluation: the selected

features using the three pervious methods are used

to train the XGBoost model. The predictions are

made on a holdout test set. Mean Squared Error

(MSE) is computed to evaluate the model's

performance. The code generates the importance

of selected features and the performance of the

XGBoost model.

E. Generic Univariate Method

Generic Univariate Select is a feature selection method

that evaluates the importance of each feature

independently using a univariate statistical test and

selects the best features based on their scores. It uses the

mathematical equation of Chi-Squared test as in statistical

test.

In Generic Univariate method, each feature is scored

individually using a statistical test appropriate for the

type of data and target variable. Common tests include

ANOVA F-value for classification task, Chi-squared test

for categorical data, and mutual information for both

classification and regression. The features are ranked

based on their scores. A predefined number of top-ranked

features or those above a certain score threshold are

selected.

The advantage of Generic univariate method is

effective, simple and fast as it evaluates each feature

independently. It helps improving model performance by

removing irrelevant features as a preprocessing step in

machine learning pipelines to reduce the feature set.

Particularly, Generic Univariate is useful in high-

dimensional datasets where many features are irrelevant.

In the other side, it doesn’t consider feature interactions

and may not perform well if important interactions

between features exist. For these reasons, it's particularly

useful in high-dimensional datasets where many features

are irrelevant

F. Mutual Information Method

Mutual Information (MI) is a measure of the mutual

dependence between two variables. In feature selection, it

quantifies the amount of information obtained about one

 Amarif, M. and Awidat, F./ The Correlation Aspects of Software Development Actual Effort and the Effected Factors 223

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

variable through another variable, thereby identifying the

relevance of features in predicting the target variable. It

measures the reduction in uncertainty of one variable

given the knowledge of the other. For feature selection, it

calculates the MI between each feature and the target

variable. In this method, features are ranked based on

their MI scores and the top-ranked features based on MI

scores are selected. MI is able to capture any kind of

dependency between variables, not just linear

correlations, but it involves intensive computation,

especially for large datasets.

G. ReliefF Method

ReliefF method is an extension of the Relief algorithm,

which is a feature selection method designed to evaluate

the quality of features by considering the differences

between neighboring instances. It is particularly effective

for identifying features that are important for

distinguishing between instances that are similar in

feature space. It's effective for datasets with many

irrelevant features. It also robust to noise and can handle

missing data. Commonly, ReliefF method is used in

bioinformatics for selecting relevant genes from

microarray data. It's also suitable for problems where

feature interactions are important and must be considered.

Expensive computations are required by ReliefF method,

especially with large datasets but it's suitable for

problems where feature interactions are important and

must be considered.

IV. RESULT AND DISCUSSION

This research uses the NASA93 dataset [6] to extract

the features most closely related to the software

development effort. It uses the statistical analysis tests to

find out the correlation of effort and effected factors. The

results indicate that the size of the program is most

connected to the software effort. It also show that the

complexity of the development software absolutely

increases the software effort as described in Fig. 1.

This research also measures the performance of three

different feature selection techniques—Generic

Univariate Select, Mutual Information, and ReliefF—

when used in conjunction with the XGBoost regressor

algorithm. The performance is measured using Mean

Squared Error (MSE), with lower values indicating better

performance.

First of all, the top ten features have been recorded

using the three selected methods as described in table 3,

4, and 5. The scores of each feature have been valued as

described in the given tables respectively. The data

descriptions of each table are visualized in Fig. 3, 4, and

Fig. 5 respectively.

TABLE III. TOP TEN FEATURES USING GENERIC UNIVARIATE METHOD

Factor/

Feature
Feature's score

KSLOC 49.85

cplx 18.43

time 15.27

sced 9.58

 stor 6.39

data 6.26

rely 5.78

vexp 4.99

acap 4.40

virt 3.42

Figure 2. The results of Generic Univariate method

The results of features selection using Generic

Univariate method indicate that the size of code

(KSLOC) is the strongest related feature with the target

variable (actual effort) followed by software complexity

and time constraint for CPU. The other features have less

relationship with the target variable (actual effort).

TABLE IV. TOP TEN FEATURES USING MUTUAL INFORMATION

METHOD

Factor/

Feature
Feature's score

KSLOC 63.83

aexp 21.83

time 15.00

data 13.50

modp 11.41

vexp 10.17

tool 09.82

rely 07.61

turn 06.91

acap 06.82

 224 SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

Figure 3. The results of Mutual Information method

The results of features selection using Mutual

Information method indicate that the size of code

(KSLOC) is also the strongest related feature with the

target variable (actual effort) followed by application

experience and time constraint for CPU. The other

features have less relationship with the target variable

(actual effort).

TABLE V. TOP TEN FEATURES USING RELIEFF METHOD

Factor/

Feature
Feature's score

aexp 49.46

KSLOC 45.32

pcap 43.84

time 43.17

 lexp 42.93

sced 41.09

modp 37.42

acap 36.51

stor 43.68

turn 34.26

Figure 4. The results of ReliefF method

The results of features selection using ReliefF method

indicate that application experience is the strongest

related feature with the target variable (actual effort)

followed by the size of the software code and

programmers capability. It has been noticed that most

features are very close effectively in the actual effort

using ReliefF method. This suggests that the selected

features have a stronger predictive power and that ReliefF

is capturing important interactions and dependencies that

the other methods miss.

After evaluating the performance of each feature

selection algorithm, the script plots a bar chart showing

the mean squared error for each algorithm. Each bar is

colored according to the corresponding feature selection

method. Text labels displaying the error rate are added

above each bar. Finally, a legend is created to distinguish

between the algorithms as described in Fig. 5.

Figure 5. The comparison of the results of XGBoost model

According to the obtained results, it has been noticed

that the use of the XGBoost algorithm in this research

presents a significant advancement over previous studies

that have relied on traditional statistical methods. By

automatically identifying the most influential features and

assessing their relative impact, the XGBoost-based

approach offers a more comprehensive and data-driven

understanding of these complex relationships.

The findings from the XGBoost analysis, which

highlight the importance of factors such as complexity

and size, provide valuable insights that can inform more

accurate software development effort estimation models.

Furthermore, the interpretability of the XGBoost feature

importance scores can help software project managers

make more informed decisions and prioritize the most

critical factors during the development process.

This research demonstrates the value of leveraging

advanced machine learning techniques, such as XGBoost,

to gain deeper insights into the factors influencing

software development effort. By moving beyond

traditional statistical methods, the study provides a novel

and innovative approach that can contribute to the

ongoing efforts to improve software project management

and cost estimation practices.

V. CONCLUSION AND FUTURE WORKS

This research aims to find out the correlation of

software development actual effort and the effected

factors using the statistical tests and the artificial

intelligent machine learning model which is XGBoost.

This is to show that machine learning are more

predictable and fast than the statistical tests.

 Amarif, M. and Awidat, F./ The Correlation Aspects of Software Development Actual Effort and the Effected Factors 225

www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT032

Comparing the results of algorithms absolutely give

insights into the consistency of feature importance

rankings and the robustness of selected features.

Features with high importance scores across multiple

algorithms are likely to be strong predictors of the target

variable and may warrant further investigation or

prioritization in model development. These importance

scores can guide feature selection, model interpretation,

and decision-making in regression analysis, helping to

identify the most influential factors affecting the

predicted outcome (actual effort in this case).

There are more other factors that might affect the

software development effort. The consideration of these

factors could be as a future work. Applying the same

procedure to various dataset is also another plan.

REFERENCES

[1] Ian Sommerville, Software Engineering, 10th edition,

Pearson Education, 2016.

[2] Sai Mohan Reddy Chirra, Hassan Reza, 2019, “A Survey

on Software Cost Estimation Techniques”, in Journal of

Software Engineering and Applications.

[3] Junaid Rashid, Muhammad Wasif Nisar , Toqeer

Mahmood, Amjad Rehman , Syed Yasser Arafat ,2020. ”

A Study of Software Development Cost Estimation

Techniques and Models”, in Mehran University Research

Journal of Engineering and Technology.

[4] Boehm, B. W., C. Abts, A. W. Brown, S. Chulani, B K.

Clark, E. Horowitz, R. Madachy, D. Reifer, and B. Steece.

2000. Software Cost Estimation with COCOMO II.

Englewood Cliffs, NJ: Prentice-Hall.

[5] Anil Jadhav, Mandeep Kaur, and Farzana Akter , 2022,

“Evolution of Software Development Effort and Cost

Estimation Techniques: Five Decades Study Using

Automated Text Mining Approach” ,Mathematical

Problems in Engineering.

[6] nasa93-dem.Available:
http://promisedata.googlecode.com/svn/trunk/effort/nasa93
dem/nasa93-dem.arff

[7] Schroeder, Bryce G. "Estimation issues in software project

management." Project Management Institute, 1991.

[8] Lagerström, Robert, Liv Marcks von Würtemberg, Hannes

Holm, and Oscar Luczak. "Identifying factors affecting

software development cost." In The Fourth International

Workshop on Software Quality and Maintainability (SQM),

Madrid, Spain, March 15-18, 2010. 2010.

[9] Gangwani, Deepa, and Saurabh Mukherjee. "Analyzing the

impact of different factors on software cost estimation in

today’s scenario." Journal of Software Engineering and

Applications 8.5 (2015): 245-251.

[10] Khan, J. A., Khan, S. U. R., Iqbal, J., & Rehman, I. U.

(2021). Empirical investigation about the factors affecting

the cost estimation in global software development

context. IEEE Access, 9, 22274-22294.

[11] T Chen and C Guestrin, " Xgboost: A scalable tree

boosting system," In Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data

mining, 2016, pp. 785-794.

http://promisedata.googlecode.com/svn/trunk/effort/nasa93%20dem/nasa93-dem.arff
http://promisedata.googlecode.com/svn/trunk/effort/nasa93%20dem/nasa93-dem.arff

