
   SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024                              79 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT026 

 
SAST Tools and Manual Testing to Improve the 

Methodology of Vulnerability Detection in Web 

Applications 
 

  Elrowayati Ali A. 

College of Industrial Technology, Misurata, Libya. 

elrowayati@yahoo.com 

Fadeel Ammar M. 

Misurata University, 

 Misurata, Libya. 

Ammar1892000@yahoo.com 
 

Abstract— Statically analyzing code during development is a 

common process of the development process, using Static 

Application Security Testing tools. SAST analyzes code 

without its execution and is also very fast compared to 

dynamic means and therefore focuses on a certain program 

part. However, the results of static analysis tools are not 

always accurate, either missing vulnerabilities or reporting 

false positives. This paper considers an evaluation of several 

SAST tools and an analysis of student code samples with 

known vulnerabilities, comparing manual analysis with the 

results of SAST tools. The results confirmed that SAST tools 

properly identify critical vulnerabilities and provide errors. 

A tool has identified ShiftLeft as the most efficient tool; 

however, its findings overlapped with the results of other 

tools for some applications. In addition, an analysis of 

student projects showed the most frequent vulnerabilities as 

Cross-site Scripting (XSS), NoSQL/SQL Injection, and 

Server-Side Request Forgery (SSRF) which make up more 

than 52% of the found vulnerabilities. 
Index Terms— static application security testing, Code 

review, vulnerability assessment, Web application security 

, OWASP. 

I. INTRODUCTION 

eb applications have become a crucial 
component of daily existence, yet numerous 

applications are deployed with severe vulnerabilities that 
can be exploited with fatal consequences [1]. Therefore, 
the quality of software and web applications lies in the 
absence of vulnerabilities in them, and early detection of 
these vulnerabilities before they are published is very 
important. Usually, these vulnerabilities are weaknesses 
in the source code of these applications which can be 
resolved by source code review. 

 Source code review is an important part of ensuring 
code quality, which in effect is a form of manual static 
analysis of the code, which is important especially when 
it comes to finding weaknesses that hide in the code, 
which are more difficult to find by using dynamic 
analysis ways; for example, relating to non-functional 
requirements such as security. 

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  
Received 30 Apr , 2024; revised 06  May, 2024; accepted 15 Mar 2024. 

AVAILABLE ONLINE 08 AUG, 2024. 

 

Nevertheless, code review poses a challenge as 
humans are prone to errors when performing repetitive 
and tedious tasks, such as reviewing extensive amounts of 
source code. 

 Therefore, some form of automated static code 
analysis is recommended. Static analysis tools offer 
several inherent benefits such as early detection of faults 
when applied in the early stages of development, not 
requiring fully functional or runnable code, and 
eliminating the need to develop test cases [2].  One of the 
most important static analysis tools is the Static 
Application Security Testing (SAST) tool. This tool, 
designed on certain rules, can detect various security 
vulnerabilities without the need to execute the source 
code. 

While both SAST tools and manual code reviews aim 
to identify and fix vulnerabilities in web applications, 
SAST offers speed and ease of use. However, SAST has 
limitations. False negatives (missing real vulnerabilities) 
and false positives (flagging nonexistent issues) can 
create a false sense of security. Additionally, 
effectiveness varies based on the development 
environment and supported languages, hence making it 
challenging to choose the best SAST tool. This study has 
three main goals. First, it investigates the effectiveness of 
SAST tools in identifying vulnerabilities; that aim is to 
see how well these tools contribute to creating secure 
code with minimal weaknesses. Second, it explores which 
SAST tools are best at detecting exploitable 
vulnerabilities, with the goal of minimizing security risks 
and costs. Finally, by applying SAST tools to student 
code, the study identifies the most common 
vulnerabilities students make.  

The rest of the study is organized as follows. Section 2 

is a concept of static code review technologies, Section 3 

reviews the related work about SAST tools for web 

applications security assessment, Section 4 describes the 

new proposed methodology approach, Section 5 is an 

analysis and results of the methodology, Section 6 

W 



80                     Elrowayati and Fadeel /SAST Tools and Manual Testing to Improve the Methodology of Vulnerability Detection in Web Applications  

 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT026 

evaluation and discussion, and Section 7 is conclusions 

and future work. 

II. STATIC CODE REVIEW 

TECHNOLOGIES CONCEPT 

A.  SDLC  AND CODE REVIEW  

The Software Development Life Cycle (SDLC) acts as 
a roadmap for software projects, guiding creation, 
maintenance, and updates. This structured approach 

ensures consistent software quality [3].  Code review 

plays a vital role within the SDLC. It involves examining 
code to identify issues like bugs, inefficiency, or security 
weaknesses. Reviews can be manual or automated and 
occur throughout the development process.  This practice 
offers several advantages: better code quality, stronger 
security, improved teamwork and knowledge sharing, and 
lower maintenance costs. By integrating code review into 
the SDLC, software teams can deliver high-quality code 

that meets stakeholder expectations [3]. 

B. VULNERABILITY MANAGEMENT SYSTEM 

BASED ON  SAST TOOLS 
Vulnerability management is a critical aspect of any 

organization's security posture. It involves identifying, 
prioritizing, and remediating vulnerabilities across 
systems and applications. Traditional Vulnerability 
Assessments (VAs) rely on Vulnerability Management 
Systems (VMS) to scan a broad range of IT infrastructure 
for weaknesses. However, for application security, a more 
targeted approach is necessary. This is where SAST tools 
come into play. This type of assessment is great for 
showing how good an organization is at performing 
patching and deploying a secure configuration. The key 
here is that these types of assessments do not focus on 
gaining access to critical data from the perspective of a 
malicious actor, but instead, are related to finding 

vulnerabilities [4]. SAST tools are a specialized type of 

VA specifically designed to analyze application source 
code during development. Unlike VMS tools that scan 
deployed systems, SAST offers the advantage of early 
vulnerability detection. By integrating seamlessly into the 
development lifecycle, SAST helps developers identify 
and fix security flaws in the code itself, before the 
application is deployed and potentially exploited. In 
conclude, building a vulnerability management system 
based on SAST tools is a strategic approach to application 
security. By integrating security testing into the 
development lifecycle, organizations can significantly 
improve the security posture of their applications, reduce 
development costs, and achieve faster release cycles. This 
proactive approach ensures applications are built with 
security in mind, ultimately enhancing the overall cyber 

security posture of the organization. [5] 

C. SAST  TOOLS 
SAST tools are a type of security analysis tool that 

assesses both source code and executable for potential 
security vulnerabilities. SAST tools are widely regarded 
as a crucial aspect of a Secure Software Development 
Life Cycle (SSDLC) [7]. These tools can detect various 
types of vulnerabilities, including buffer overflow, 
injection attacks, and cross-site scripting. However, the 

degree of user-friendliness of SAST tool interfaces can 

vary significantly, particularly about error tracing [6,  7 ]. 

III. RELATED WORKS 

In the literature, few research studies have evaluated 
different aspects of software security tools. In [1], the 
authors focused on evaluated web vulnerability scanners 
using multiple benchmarks, emphasizing the need for 

diverse evaluation criteria.  In [8], the article specifically 

assessing the effectiveness of source code analysis tools 
in identifying memory corruption vulnerabilities, 
highlighting limitations in detecting such vulnerabilities; 
however, his study focused on desktop applications 

written in C++/C and Java only. Recently, in [9], the 

author examined sixteen SAST tools for identifying 
vulnerabilities in JavaScript and Python web applications, 
emphasizing the importance of multiple tools and 
evaluation strategies; However, some of the popular tools 
among developers have been overlooked. 

IV. METHODOLOGY  

As illustrated in Fig.1 below, the methodology for a 
code review process leverages automation to help identify 
potential issues in code. The methodology has been 
broken down into steps: 

 

Figure 1. proposal methodology 

1. Select manual analysis criteria: This research 

leveraged the "OWASP Code Review Guide Project" 

[11] to define criteria for manual code review. This 

approach aimed to streamline the process by 

focusing on security vulnerabilities within the source 

code. 



   SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024                              81 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT026 

2. Collecting Case Study Code: Evaluating static 

analysis tools requires testing them on case study 

source code. Here, the case studies were chosen by 

analysing their code and comparing the results. The 

case studies included : 

 Vulnerable Code:  
o Code obtained from GitHub with 

known vulnerabilities. 

o OWASP Juice Shop project source 

code. 

 Real-World Code:  
o Compiled code from student-designed 

applications. 

o A portion of source code from an actual 

project. 

3. Gathering Tools: The collection of tools was based 

on the most popular and used in the developer 

environment, to be a study as close as possible to 

developers. In addition, to ensure the study reflected 

real-world developer environments, popular tools 

were chosen. The initial selection included : 

- SNYK Code So Now You Know (SNYK) 

Code  

- Horusec  

- Fluid Attack’s Scanner  

- WhiteSource Bolt 

- Sonarcloud 

- ShiftLeft Scan 

 

4. Selecting the Best Tools: Two key factors guided 

tool selection : 

 Language Support: The tools needed to 

support the targeted languages 

(JavaScript/TypeScript, PHP). 

 Previous Evaluations: Tools were evaluated 

based on similar studies using the OWASP 

Benchmark tool and their performance on case 

studies.  

According to [9], the top two performing tools (SNYK 

Code and Horusec) were chosen. Additionally, ShiftLeft 

Scan, a popular developer tool not included in [9], was 

added. 

5.  Compile code: In order to prepare code for analysis, 

work was done on collecting various source codes to 

ensure comprehensive analysis. The focus was on 

combining code with known vulnerabilities and 

student-developed projects from Misurata 

University. The collected source code falls into these 

categories: 

- GitHub Code: A collection of source codes 

containing different security vulnerabilities. 

- OWASP Juice Shop: The source code of a 

vulnerable website designed for security training 

purposes. 

- Student Projects:  

o Project 1: Source code for a student-

developed website, potentially 

deployed publicly. 

o  Project 2: Source code for a 

student-developed web application, 

likely used for a student event and 

not publicly accessible. 

 

6. Applying Manual and Automated Analysis: 

After completing the code preparation phase, we 

conducted manual code review and then applied 

SAST tools on the target code samples.  To evaluate 

the effectiveness of the SAST tools in identifying real 

vulnerabilities, we employed a vulnerability 

classification process (detailed in Fig. 2). The results 

of this process will be discussed in the analysis and 

results section. 

 

 
Figure 2.  the vulnerability classification process 

 

7. Comparing the Results of the Tools: 

To identify the most effective SAST tool in terms of 

security vulnerability detection, we compared the 

results of the SAST code analysis on the target codes. 

The comparison will be based on standard 

performance metrics: precision, recall, and F-measure. 

The equations for these metrics are provided below: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)⁄  (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)⁄  (2) 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

= 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)⁄  (3) 

Where: 

TP (True Positive): This refers to a case where the 

tool correctly identifies a real security vulnerability in 

the code. It's the ideal scenario where the tool detects 

a genuine problem. [11] 

FP (False Positive): This occurs when the tool 

identifies a potential vulnerability but it's actually a 

harmless issue or a coding practice that doesn't pose a 

real security risk. It's a false alarm triggered by the 

tool. [11] 

FN (False Negative): This happens when the tool 

misses a real security vulnerability in the code. It's a 

critical error where the tool fails to detect a genuine 

problem, leaving the code susceptible to attacks. [11] 



82                     Elrowayati and Fadeel /SAST Tools and Manual Testing to Improve the Methodology of Vulnerability Detection in Web Applications  

 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT026 

8. Final Results and Discussion 

Following the data analysis stage, the final results 

from both manual and automated analyses will be 

presented. These results will be thoroughly evaluated 

and discussed to identify key findings and draw 

meaningful conclusions that contribute to the study's 

objectives. The details of this analysis and discussion 

will be presented in section F (Evaluation and 

Discussion). 

9. Comparative Study and Final Report 

After presenting and discussing the analysis results, 

we will conduct a comparative study. This involves 

comparing our findings on SAST tool performance 

with those of a similar study by reference [9]. This 

comparison aims to identify the most significant 

similarities and differences between the two studies. 

By doing so, we can gain valuable insights into the 

broader context of SAST tool evaluation and further 

strengthen the validity of our own results by situating 

them within a broader context. The findings of this 

comparative study will also be included in the final 

report (section F).  

V. ANALYSIS AND RESULTS  

This section presents the key findings obtained during the 

different stages of the study, ultimately addressing the 

goal of evaluating the SAST tools. Here, we will analyze 

and compare the results from both manual code review 

and automated analysis using the selected SAST tools. 

A. Manual Code Review Results 

We begin by reviewing the results of the manual 

code review process. These results will be presented 

in a summarized format using a statistical chart for a 

high-level overview. Fig. 3 depicts the number of 

security vulnerabilities identified in the target source 

codes based on the predefined criteria. It's important 

to note that the manual analysis revealed a total of 

209 vulnerabilities. 

 

 
Figure 3 the results of the manual analysis 

 

B. Automated Analysis Results using SAST Tools 

Next, we will analyse the results obtained from the 

automated analysis using the selected SAST tools. 

Here, we will present the total number of 

vulnerabilities discovered by each tool within the 

target source code. The vulnerabilities shown in 

Fig.4 encompass all potential vulnerabilities detected 

by the SAST tools, and might include some false 

positives. 

 

 
Figure 4 the results of the automated analysis 

VI. EVALUATION AND DISCUSSION  

A.  Discussion of Results 
Comparing the manual results with the automatic 

results here, we compare the results obtained from 
manual code review with the findings from automated 
analysis using SAST tools. This comparison aims to 
assess the effectiveness of the tools in detecting 
vulnerabilities compared to human expertise. True 
Positives, False Positives, and False Negatives:  We will 
present the results in table1, focusing on True Positives 
(TP), False Positives (FP), and False Negatives (FN).  
Note: Since we analyzed real code with existing 
vulnerabilities, True Negatives (TN) are not applicable. 
Performance Metrics: As mentioned earlier, Precision, 
Recall, and F-measure are crucial metrics for evaluating 
the performance of classification models like SAST tools. 
These metrics were defined previously. 

Table 1. comparison results between manual and automatic 

analysis on all target codes 

 

By comparing the performance of the SAST tools across 

different project environments and security 

vulnerabilities, it's evident that their effectiveness can 

vary. While ShiftLeft emerged as the tool with the 

highest F-measure, indicating a good balance between 

vulnerability detection and minimizing false positives, 

our study emphasizes the value of using multiple tools for 

a more comprehensive code review.  Furthermore, 

combining manual code review with automated analysis 

provides the most robust approach to identifying security 

vulnerabilities. Notably, Cross-site Scripting (XSS) and 

NoSQL/SQL Injection vulnerabilities were frequently 

detected, highlighting their prevalence and criticality in 

web applications. 

 

B. Comparative studies 
Comparing our findings with previous studies helps 

validate our results, identify potential limitations, and 
potentially offer new recommendations. In this section, 
we will compare the performance of the SAST tools used 

in our study with the findings of a similar study in [9].  

26 

81 

93 

9 

0

10

20

30

40

50

60

70

80

90

100

GitHub codes Juice-Shop
code

Project 1 code Project 2 code

vulnerabilities

7
3
4
 

7
2
8
 

2
5
7
8
 

S N Y K  C O D E   S H I F T L E F T  H O R U S E C  

vulnerabilities

Tools TP FP FN Recall precision 
F-

Measure 

SNKY 

code 
174 560 35 0.833 0.237 0.369 

ShiftLeft 176 552 33 0.842 0.241 0.375 

Horusec 176 2402 33 0.842 0.068 0.126 



   SPECIAL ISSUE For IJEIT ON ENGINEERING AND INFORMATION TECHNOLOGY. , VOL.12 ,NO. 1, December 2024                              83 

www.ijeit.misuratau.edu.ly                                                                         ISSN 2410-4256                                                                                   Paper ID: IT026 

This prior study evaluated these same tools on a set of 16 
applications. Furthermore, we focused on two key 
comparisons: 

Overall Tool Performance: This comparison will 
analyze the F-measure scores achieved by each tool in 
both studies across all applications (including those 
written in languages besides JavaScript). The results are 
presented in Table 2. 

Table 2. comparing the results of the tools analysis of the 

target codes with the results of the previous study [9]. 

 

JavaScript-Specific Performance: Here, we will 
compare the F-measure scores for each tool specifically 
on JavaScript applications within both studies. The results 
are presented in Table 3. 

Table 3 comparing the results of the tools analysis of the 

target codes with the results of the previous study [9] 

based on JavaScript codes 
 

As shown in Table 2, there are significant differences 
in the overall F-measure scores between our study and 

[9]. This can be attributed to variations in the target 

application environments. Our study included 

applications written in multiple languages, whereas [9] 

focused solely on JavaScript. Table 3 highlights similar 
trends for JavaScript-specific performance.  Here, while 
Snyk Code and Horusec achieve lower F-measure scores 
compared to [9], it's important to consider that ShiftLeft, 
which achieved the highest F-measure in our study, 

wasn't included in the previous researches such as [9]. 

VII. CONCLUSIONS AND FUTURE WORK 

A. Conclusion  

We have conducted an empirical study regarding the 

effectiveness of Static Application Security Testing 

(SAST) tools on detecting security vulnerabilities in 

source code by comparing the results of manual code 

review to SAST analysis for various case studies. We 

have shown that SAST tools effectively detected a 

noticeable proportion of security vulnerabilities. Notably, 

ShiftLeft was the most effective tool for the evaluated 

JavaScript/TypeScript and PHP web applications. We 

identified Cross-site Scripting as the most common 

vulnerability in student-developed web applications. 

Most importantly, some SAST tools also detected and 

provided alerting to the developers regarding this critical 

vulnerability. Tools such as SNYK Code even gave 

remediation recommendations for students to build more 

secure applications. In conclusion, this study met its 

objectives effectively as SAST tools are a great 

complement to manual code review to enhance the 

security of web applications in mitigating potential 

security risks. 

Future work 
 This research paves the way for several compelling areas 

of future exploration: 
 

- Development of effective developer education. 

Further studies could be undertaken in order to 

develop effective educational programs that will 

stimulate the adoption of SAST tools among 

developers and students in large numbers. This 

would significantly contribute to a more secure 

software development landscape. 

- Integrating code review practices: Further 

research is necessary to develop strategies to 

help integrate code review practices into the 

workflow of a developer or a student. The ability 

to share and check on code is one of the best 

ways to ensure application security and safety. 

- OWASP Benchmark Project: This research finds 

this very valuable and practical for inquiring into 

how well the OWASP Benchmark project is 

practically deployed and exploited. The study 

offers a rich set of evaluation tests that 

developers and students can exploit to find the 

most effective tools for detecting and remedying 

vulnerabilities within their applications well 

before deployment. 

ACKNOWLEDGMENT 

This work is partly supported by faculty of IT, 

Misurata University, Libya. Our gratitude is also 

extended to the National Information Security and Safety 

Authority (NISSA)for its cooperation and the assistance 

and valuable information it provided for this study. 

REFERENCES 

[1] Mburano, Balume, and Weisheng Si. "Evaluation of web 

vulnerability scanners based on owasp benchmark." 2018 26th 
International Conference on Systems Engineering (ICSEng). 

IEEE, 2018.  

[2] Axelsson, Stefan, et al. "Detecting defects with an interactive code 
review tool based on visualisation and machine learning." the 21st 

International Conference on Software Engineering and Knowledge 

Engineering (SEKE 2009). 2009.  
[3] Winters, Titus, Tom Manshreck, and Hyrum Wright. Software 

engineering at google: Lessons learned from programming over 

time. O'Reilly Media, 2020.  
[4] Duffy, Christopher, et al. Python: Penetration Testing for 

Developers. Packt Publishing Ltd, 2016.  

[5] Roytman, Michael, and Ed Bellis. Modern Vulnerability 
Management: Predictive Cybersecurity. Artech House, 2023.  

[6] OWASP website, OWASP Code Review Guide, access date 

5/7/2023  https://owasp.org/www-project-code-review-guide/ . 
[7] Hsu, Tony Hsiang-Chih. Practical security automation and testing: 

tools and techniques for automated security scanning and testing 

in devsecops. Packt Publishing Ltd, 2019.  
[8] Tejning, Johan. "Vulnerability assessment of source codeanalysis 

tools for memory corruptionvulnerabilities a comparative study." 

(2021).  

[9] Di Stasio, Vincenzo. Evaluation of Static Security Analysis Tools 

on Open Source Distributed Applications. Diss. Politecnico di 

Torino, 2022.  
[10] Higuera, Juan R. Bermejo, et al. "Benchmarking Approach to 

Compare Web Applications Static Analysis Tools Detecting 

OWASP Top Ten Security Vulnerabilities." Computers, Materials 
& Continua 64.3 (2020). .  

[11] Fisher, Derek. Application Security Program Handbook. Simon 

and Schuster, 2023.  

Tools Our study [7] 
SNKY 

code 
0.369 0.7 

Horusec 0.126 0.73 

ShiftLeft 0.375 - 

Tools Our study [7] 
SNKY 

code 
0.369 0.712 

Horusec 0.126 0.706 

ShiftLeft 0.375 - 


