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Abstract— Medical Image Fusion is a process that involves 

combining information from multiple medical images, 

which is essential for healthcare applications like diagnosis, 

treatment planning, and image-guided interventions. Deep 

learning techniques have shown significant promise in 

medical image fusion by integrating information and 

effectively capturing data from diverse modalities. 

Additionally, Data augmentation techniques have come to 

be an important tool for improving model performance and 

generalization. The objective of this paper is to give a 

comprehensive overview of deep learning techniques and 

data augmentation methods utilized in medical image fusion 

from 2018 to 2023. The paper covers a variety of topics such 

as image registration, feature extraction, fusion 

architectures, data augmentation techniques, and evaluation 

metrics. The survey also discusses the challenges, 

limitations, and future directions in the field. 

 

Index Terms—medical image fusion, data augmentation, 

convolutional neural networks, generative adversarial 

networks, transfer learning. 

I. INTRODUCTION 

edical Image Fusion (MIF) is a process that 

creates a single image called a fused image by 

integrating two or more medical images. The images can 

be of a single type or multiple types (multimodality) [1, 

2].  The fused image contains complementary 

information from each input image. There are two types 

of medical image modalities, anatomical and functional.  

The human body has a rich anatomical structure that can 

be captured through anatomical images. For example, 

computed tomography (CT) and magnetic resonance 

imaging (MRI), Single-photon emission computed 

tomography (SPECT). CT is effectively useful for 

imaging soft tissues, the low density of protons in bone 

tissue makes the bone image from MRI unclear. MRI is 

particularly effective for examining soft tissues, such as 

the brain and spinal cord [3]. Therefore, the biggest 

challenge in the medical field is to accurately identify 

diseases and provide better treatment. The accuracy of 

diagnosis can be improved by using  
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multiple medical images through image fusion to increase 

the amount of information. MIF is an important technique 

in healthcare that is used in multiple clinical applications 

including diagnosis, medical assessment, treatment 

planning, and surgical operations.  Using CT and MRI 

images provides both anatomical and functional 

information, leading to more accurate diagnosis and 

treatment planning. Likewise, by combining MRI and 

Positron Emission Tomography (PET) images, it is 

possible to visualize structural and metabolic information, 

which helps in the identification and characterization of 

tumors [4]. Recently, Deep Learning (DL) has been the 

latest paradigm shift in all fields. In the MIF field, DL 

methods have more powerful feature extraction 

capabilities than traditional methods. Convolutional 

neural networks (CNNs) algorithms have demonstrated 

remarkable abilities in feature extraction and data 

representation, making them suitable for MIF tasks. A 

multi-layer concatenation fusion network (MCF-Net) 

built by Liang et al [5] employs CNNs to retrieve features 

from diverse sources and then fuse them. This study 

shows how CNNs are capable of extracting informative 

features for MIF as an end-to-end Deep learning model. 

Another approach for medical image fusion is the 

generative adversarial networks (GANs). The model is a 

GAN proposed by Ma and colleagues in 2018 for 

combining infrared and visible images [6]. To combine 

the input images, a generator network is employed, and a 

discriminator network is utilized to distinguish between 

the fused image and the ground truth. The generator 

network is conditioned to reduce adversarial loss and 

mean squared error between the fused image and the 

ground truth. This assumes that the two sets of images 

contain complementary information that can be combined 

to produce a more informative and visually pleasing 

image. This study highlights the potential of GANs in 

enhancing the quality and accuracy of fused images. The 

use of DL techniques for MIF still involves some 

challenges, e.g., the lack of diverse datasets because of 

the difficulty of acquiring image datasets from medical 

imaging centers due to the privacy of patient data and the 

difficulty of getting a different type of images for the 

same patient. Furthermore, there is a lack of labeled 

datasets and difficulties in the interpretability and 

M 
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explain-ability of DL models. This leads to the need for 

improved evaluation metrics that align with clinical 

requirements, as well as the generalization of unseen 

data, computational complexity, time constraints, and 

resource requirements. Recent studies have proposed 

algorithms that prompt the use of data augmentation and 

transfer learning )TL) to face the challenges. One method 

is to use augmentations to increase the size of dataset 

training by inferring new data from the available dataset 

using the data augmentation technique [7]. In MIF, data 

augmentation produces new images by applying 

transformation techniques to the existing images. Another 

technique to overcome challenges is transfer learning. 

Transfer learning begins with a model that has already 

been trained on a large dataset instead of starting from 

scratch, transfer learning utilizes the learned 

representations from another model to enhance its 

performance and efficiency [8]. The purpose of this 

article is to give a complete overview of the present state 

of the art in this area. The survey aims to gather and 

simplify the current literature on the use of deep learning 

and data augmentation in MIF, with a focus on the 

achievements, challenges, and potential future direction. 

The contributions of this survey paper can be summarized 

as follows:  

1. A comprehensive overview: The paper presents the 

most recent DL techniques used in MIF by focusing 

on different deep learning models, such as CNNs, 

and GANs, and their applications and performance in 

MIF tasks. 

2. Analyzing of data augmentation techniques: The 

paper examines how data augmentation techniques 

are utilized in MIF, and the focus is on various data 

augmentation methods and their effect on improving 

the performance and generalization of DL models for 

MIF. 

3. Evaluation and comparison: Comparing and 

evaluating the performance of various data 

augmentation methods and DL techniques for MIF. It 

discusses the strengths and limitations of each 

approach. 

4. Discuss challenges and future work: Identify the 

challenges and open research questions in the field of 

deep learning-based medical image fusion. 

The remaining sections of the paper are as follows: 

Section II provides a summary of research on image 

registration for MIF. In section III, feature extraction for 

MIF. In section IV, deep learning architectures for MIF 

are discussed in detail. In section V, data augmentation 

techniques for MIF are explained. In section VI 

evaluation metrics and datasets are presented. In section 

VII, the Discussion explains various research challenges 

and limitations. In Section VIII, applications and case 

studies are discussed. In Section IX, the conclusion is 

presented.  

II. IMAGE REGISTRATION FOR 

MEDICAL IMAGE FUSION 

Image registration [3, 37] involves aligning and 

matching two or more images of the same scene or object 

to establish a correspondence between their pixel 

coordinates. Traditional image registration techniques are 

categorized into intensity-based methods and feature-

based methods. The intensity-based method is the spatial 

transformation that aligns the images best taking into 

account factors such as rotation, scale, translation, and 

deformation [9]. Features based on features such as color 

gradient, edges, geometric shape and contour, image 

skeleton, or feature points can be used to create 

correspondence between input images. [10,11] discuss 

the limitations of traditional registration techniques. the 

methods often require creating good transformation 

parameters, which can be challenging to obtain, 

especially in cases of significant differences or large 

deformations between the images. Another limitation is 

the researcher’s reliance on handcrafted features or 

landmarks, which may not capture all the relevant 

information in the images and can result in errors or 

inconsistencies. Additionally, traditional registration 

techniques can be expensive to compute and time-

consuming, especially for large datasets or complex 

registration tasks. In recent years deep learning 

techniques have been widely used to address the 

limitations of traditional image registration. Deep Neural 

Networks (DNN) [10] involve aligning and matching 

different medical images to enable comparison, analysis, 

and fusion of information. Data augmentation techniques 

in image registration can be beneficial for improving the 

robustness and generalization of the registration 

algorithm [11]. The accuracy and efficiency of medical 

image registration have been improved by building 

hybrid models from DL techniques and traditional ones 

that take advantage of both techniques. Fig. 1 shows the 

most important steps for registration and fusion, the 

registration and fusion are two main steps for 

enhancement of medical image. The pre-processing and 

registration steps are known as Feature extraction in MIF. 

 

Figure 1. General diagram of the multimodal registration and fusion 

adopted from [12] 

III. FEATURE EXTRACTION FOR 

MEDICAL IMAGE FUSION 

Feature extraction [13] refers to the process of 

extracting relevant and discriminative features from the 

source images before fusing. The fusion of images 

requires this step to capture essential information from 

each modality and preserve important details. The fusion 

of images requires this step to capture essential 

information from each modality and preserve important 

details. Two categories of feature extraction methods can 

be broadly classified:  

1. Transform-based methods use mathematical 

transforms such as wavelets, curvelets, and 

contourlets to extract features from the input images 

[13]. These are traditional handcrafted feature 

extraction techniques as well as deep learning-based 

approaches. The features are extracted from images 

based on intensity, texture, shape, or statistical 

properties [1], and they are then combined or fused 
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using fusion algorithms to generate the fused image 

manually. 

2. Learning-based methods use machine learning 

algorithms like CNNs to learn features directly from 

the input images. CNNs utilize deep neural networks 

to learn hierarchical and abstract representations 

from the input images automatically. These networks 

can capture complex patterns and structures in the 

images by learning discriminative features directly 

from raw input data [9, 14]. 

The goal of feature extraction methods is to extract 

valuable features that represent the unique characteristics 

of each modality and preserve crucial details for accurate 

diagnosis and analysis. The methods of extracting 

features are based on the specific requirements of the 

fused image task and the characteristics of the input 

images. Selecting a method that is capable of effectively 

capturing relevant information and maintaining important 

features in the fused image is important. 

A. Fusion Rules for Extraction Feature in Medical Image 

Fusion 

Fusion rules are the methods or techniques employed 

to merge data from multiple input images into one fused 

image [15]. These rules determine how the pixel values 

or features from the input images are merged to build the 

fused representation. Fusion rules can be applied based 

on the specific application and requirements [4, 15], the 

following are common fusion rules: 

1. Averaging: This rule determines the average of the 

pixel values in the input images and assigns it to 

this corresponding pixel in the fused image. This 

fusion rule is both simple and widely used. 

2. Maximum selection: This rule identifies the 

highest pixel value among the corresponding 

pixels in the input images and assigns it to the 

corresponding pixel in the fused image. It is 

commonly employed in situations where the 

highest intensity or the most significant features 

require preservation. 

3. Weighted sum: This rule combines different 

weights on the pixel values in the input images. 

The weights can be calculated by analyzing the 

quality or reliability of each input image. 

4. Transform-based fusion: To extract features or 

coefficients from the input images, this rule 

employs a transformation or fusion algorithm, like 

wavelet transform or sparse representation. After 

combining these features or coefficients, it uses 

specific fusion rules to generate the fused image. 

To summarize, there are many techniques and 

algorithms available in the literature for 

image fusion. DL techniques for image fusion 

also utilize the fusion rules. 
B. Transfer Learning and Pre-trained Models for 

Feature Extraction 

Transfer learning (TL) is a technique in DL where a 

pre-trained model is a large dataset trained for a similar 

task that is used as a starting point for a new model but 

related task [16]. Models that leverage the knowledge and 

representations learned from the pre-trained model 

instead of training them from scratch. This led to 

significantly improved performance, especially when the 

new task had limited training data. Another important 

benefit is that TL can save time and hardware resources 

[17]. The authors of [18] explained that feature extraction 

in TL is the pre-trained model used to extract features. 

The model's weights are frozen, and the input data is 

passed through the model to obtain the learned features 

from the intermediate layers. The process of TL involves 

utilizing a model that has been trained to extract features. 

The model's weights are frozen, and the input data is 

routed through it to acquire the learned features from the 

intermediate layers. Fig. 2 illustrates how these features 

can be used as input for a new classifier or further 

processing in a new task. The transfer learning process 

consists of two main primary steps pre-training and Fine-

tuning [8, 19]. 

 

 
Figure 2. Top-level diagram of Transfer learning from a pre-trained 

adopted form [20] 

 

Many studies in MIF used TL techniques, one recent 

study proposed a hybrid method that combined TL and 

the discrete wavelet transformation (DWT) to merge 

multi-modal medical images [21]. The proposed approach 

outperforms other approaches, as confirmed by the 

experimental results, and the significance of the image 

that has been fused is determined through qualitative 

metrics. Several transfer learnings based on CNN 

architecture have been used for MIF tasks, such as 

ResNet (Residual Network) [19], and U-Net [21], most of 

these models learned on the ImageNet dataset. ImageNet 

dataset has millions of natural images. 

IV. MEDICAL IMAGE FUSION USING 

DEEP LEARNING ARCHITECTURE 

The deep learning architectures for MIF are 

categorized into two types Non-End-To-End and End-to-

End image fusion framework based on DL. Non-End-to-

End image fusion framework involves multiple steps in 

the processing of image fusion. Initially, the source 

images are submitted to a DL network, like CNN or 

ResNet, to extract features. After that, fusion rules that 

are based on spatial transforms or decision maps are used 

to fuse extracted features. Finally, to obtain the final 

fused image, the fused features must be rebuilt [12]. In 

the End-to-End image fusion framework, the source 

images are directly inputted into a DL network, such as a 

U-Net, which performs both feature extraction and fusion 

in a single End-to-End process. The network is trained to 

extract important features from the source images and 

create the fusion image directly, without the necessity of 

explicit fusion rules [4]. Deep Learning has succeeded in 

fusing the medical image by building models that utilize 
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algorithms such as CNNs [4, 20], GANs [4], and 

Transformer Networks [4, 28]. The use of these 

algorithms can result in the fusion of images from various 

modalities or enhance the information in a single 

modality image. The following explains the techniques 

used in these algorithms: 

A. Convolutional Neural Networks (CNNs) 

CNN models are used to extract features from images 

using convolutional layers. CNN has multiple layers of 

convolutional filters, followed by pools of layers and 

fully connected layers. The output of every layer is fed 

into the next layer, resulting in a set of features that can 

be applied for classification [22]. Medical image fusion 

can extract features from input images by utilizing basic 

CNN architectures that remove fully connected layers and 

use convolutional layers, as demonstrated in Fig. 3. The 

fused image can be generated by processing and fusing 

the extracted features [4, 23].  

 

Figure 3.MIF framework based on CNN model adopted from [23] 

The limitations of manually designing fusion rules can 

be overcome by using End-to-End training to learn the 

appropriate parameters of convolutional filters. Medical 

image fusion has been commonly performed using 

various basic CNN architectures. A CNN architecture 

called Siamese networks has two or more identical 

subnetworks that share the same weights and architecture. 

The use of these subnetworks involves processing various 

inputs in parallel and extracting their respective features 

[18]. Siamese networks are a popular choice for feature 

extraction and similarity computation tasks, like image 

matching, verification, and retrieval. To create Siamese 

networks, the main goal is to acquire a similarity metric 

that can measure the similarity or dissimilarity between 

inputs by establishing a link between weights and 

architecture. 

B. Generative Adversarial Networks (GANs)  

The initial proposal for Generative Adversarial 

Networks (GANs) was made in 2014 [23]. DNN 

frameworks known as GANs can learn from a training 

dataset and generate new data that matches the training 

dataset's characteristics [23]. GANs illustrated in Fig. 4 

are made up of two neural networks, the generator, and 

the discriminator, that compete against each other. The 

generator is trained to generate fake data, and the 

discriminator is trained to recognize fake data from real 

examples. If the generator produces false data that the 

discriminator can easily recognize as implausible, like a 

faceless image, they will be punished. Over time, the 

generator acquires the ability to create more plausible 

examples.  High-quality fused images can be generated 

using adversarial learning in image fusion methods based 

on GAN.  The generator is designed to produce a merged 

image, the objective of the discriminator is to distinguish 

between the generated fused image and the actual fused 

image, while keeping the structural and functional 

information from the source images. 

 

Figure 4. MIF framework based on the GAN model adopted from 

[23] 

 

GANs can be used for multimodal [24] and multi-scale 

[23] fusion of images from multiple sources at different 

scales with high-quality fused images. Conditional 

generative adversarial network (cGAN) is a type of 

GAN that incorporates extra conditioning information 

to guide the image generation process. The generator of 

fused images can be conditioned on both the source 

images and additional information related to the fusion 

task using cGANs. One popular cGAN-based method 

for image-to-image translation and fusion is Pix2Pix. 

Pix2Pix was proposed by Isola et al [20] by using a 

cGAN architecture to learn the mapping between input 

and output images. Section VII will present the 

successful application of GANs in various MIF 

applications. 

C. Transformer Networks 

Transformer-based architectures have become 

popularly used for multimodal fusion tasks due their 

ability to capture complex relationships and dependencies 

between different modalities. They used self-attention 

mechanisms to model the interactions between modalities 

and regions of interest (ROI) or created fused 

representations. Each feature is assigned attention 

weights by this mechanism based on its relevance to other 

features across modalities. Weighted feature 

representations are calculated using attention weights, 

emphasizing important features and suppressing less 

relevant ones [1].  

The application of Transformer Networks (TNs) has 

been successful in various computer vision tasks, 

including image fusion. TNs are utilized for capturing 

long-range dependencies and modeling the relationships 

between pixels in input images. TNs are constructed 

using an encoder-decoder architecture that has self-

attention mechanisms. The encoder handles processing 

the input images and extracting their features, and the 

decoder produces the fused image using the encoded 

features by attending to different parts of the input images 

and gathering the relevant information for fusion [1, 3].  

V. DATA AUGMENTATION 

TECHNIQUES FOR MEDICAL 

IMAGE FUSION 

Data augmentation (DA) is a technique used to 

generate more training samples by creating new modified 
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versions of the original data [25]. This technique is 

particularly useful when the original dataset is small, 

imbalanced, poor quality, or lacks diversity. The benefits 

of data augmentation in DL-based fusion include [8, 28]:  

1. Improved model performance: Providing more 

training samples will enable the model to learn from 

a wider range of variations and patterns in the data. 

2.  Increased model robustness: By exposing the fusion 

model to different variations and transformations of 

the input data, data augmentation can improve the 

model's ability to handle variations and noise in real-

world scenarios. 

3. Reduced overfitting: Data augmentation helps to 

prevent overfitting by introducing variations in the 

training data, which reduces the model's reliance on 

specific features or patterns that may be present in 

the limited original dataset. 

4. Enhanced generalization: By increasing the diversity 

of the training data, data augmentation enables the 

fusion model to generalize better to unseen data, 

improving its performance in real-world 

applications. 

Data augmentation methods are categorized into two 

types, traditional techniques and advanced data 

augmentation. Traditional data augmentation methods 

refer to basic image transformation operations that are 

commonly used to perform geometric and photometric 

transformations on the training data. These methods 

include techniques such as rotation, flipping, cropping, 

scaling, blurring, color volatility, noise injection, and 

contrast adjustment [8]. however, advanced data 

augmentation methods include deeply learned 

augmentation strategies, meta-learning-based 

augmentation techniques [26], neural style transfer, 

generative modeling, and neural rendering. The existing 

DL models can improve their accuracy and generalization 

performance by utilizing (incorporating) these new 

images resulting from the data augmentation process. 

A. Domain-Specific Data Augmentation Strategies for 

Medical Images: 

Domain-specific data augmentation strategies for 

medical images refer to techniques that are specifically 

designed and tailored for the unique characteristics and 

requirements of medical imaging data. These strategies 

take into account the specific challenges and 

considerations in medical image analysis, such as limited 

data availability, class imbalance, and the need for robust 

and interpretable models. Some examples of domain-

specific data augmentation strategies for medical images 

include: 

1. Patch-based augmentation: This strategy involves 

extracting patches (sub-images) from medical images 

and applying various transformations to augment the 

dataset. Patch-based augmentation has the potential 

to increase the variety of training samples and 

enhance the model's ability to capture local image 

features [27]. 

2. Intensity-based augmentation: Medical images often 

exhibit variations in intensity levels due to different 

imaging modalities, acquisition protocols, and 

patient conditions.  

3. Intensity-based augmentation techniques: histogram 

equalization, contrast adjustment, and intensity 

normalization, can help standardize the intensity 

distribution across images and improve the model's 

robustness to intensity variations [27, 28].  

4. Class-balanced augmentation techniques: techniques 

aim to address this issue by generating additional 

samples for minority classes, thereby improving the 

model's ability to learn from and accurately classify 

rare or abnormal cases [28]. 

VI. EVALUATION MATRICES AND 

DATASETS  

A. Evaluation Metrics: 

The effectiveness of image fusion algorithms is 

evaluated through multiple parameter measures, with 

each method having its advantages. Multimodal MIF 

evaluation metrics can be divided into qualitative and 

quantitative metrics [10]:  

1. Qualitative evaluation metrics: qualitative metrics 

include visual inspection and subjective assessment 

of the fused images. The fused images are analyzed 

by medical professionals with expertise or 

radiologists using these metrics to evaluate their 

quality, clarity, 

and information content. Color, spatial details, 

image size, and other parameters must also be 

taken into account when examining the fused 

image. 

2. Quantitative evaluation metrics: The objective is 

to provide objective metrics for the performance 

of fusion algorithms. These metrics are used to 

analyze the similarity, information preservation, 

and spatial consistency of the fused image and 

its source images. Common quantitative 

evaluation metrics for multimodal MIF are listed 

in Table 1.

TABLE 1. Quantitative Evaluation Metrics 

No Name Describe Equation Ref 

1 
Mutual 

Information 

(MI) 

The amount of information that has 
been transferred between the fused 

and the source images. 

   
                                                           

      
   ∑ ∑ 

       

        
      

         
          

F is the result of combining, and A and B are the two input images. 

[40] 
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2 

Structural- 

Similarity-

Index (SSIM) 

Taking into account luminance, 
contrast, and structural information, 

the fused image and the source 

images have structural similarities. 

                (                   )  (3) 

          
                   

   
    

        
    

     
, 

          
                   

   
    

        
    

     
       

[4] 

3 

Peak- Signal-

to-Noise-

Ratio (PSNR) 

The quality of the fused image can 

be evaluated by comparing it to the 
source images in terms of signal-to-

noise ratio. 

             

    

√   
                                      

- I and max stand for the original image and the maximum pixel gray 

level. 

- MSE stands for mean square error. I and J are separate images that 
have been combined 

[4] 

4 Entropy 

Quantifies the amount of 

information or randomness in the 
fused image 

     ∑                     

   

   

 

P(i) is the probability corresponding to the grey level i. 

[29] 

A. Medical Image Fusion Datasets 

Datasets for deep learning research are collections of 

labeled or unlabeled data that are used to train, validate, 

and test deep learning models, these datasets are crucial 

for developing and evaluating the performance of DL 

algorithms and models across various domains and tasks.    

 Datasets for deep learning research are collections of 

labeled or unlabeled data that are used to train, validate, 

and test deep learning models, these datasets are crucial 

for developing and evaluating the performance of DL 

algorithms and models across various domains and tasks.    

                                    

To learn and generalize effectively, deep learning 

models typically require a lot of data. The size, 

complexity, and specific problem addressed by the 

datasets used in deep learning research can vary widely. 

Patient privacy concerns have led to the lack of publicly 

available datasets in the field of medical image fusion. 

The researchers suggested that creating more high-quality 

public datasets for medical image fusion would be 

beneficial for future research, data augmentation is an 

important technique as mentioned in this section. Table 2 

lists some of the medical image datasets that are 

multimodal and available. These datasets can be used for 

research and development purposes.

TABLE 2. Available multi-modal Medical Image datasets 

No Dataset Name Year Modality Disease Quantity Ref 

1 
Harvard Medical School's 

Whole Brain Altas program 

1999 

 

MRI, CT 

SPECT, PET 

Cerebrovascular disease, 
brain tumor, and 

Alzheimer's disease 

13,000 
http://www.med.harv

ard.edu/AANLIB/ 

 

2 
SMI (Stanford Medical 

ImageNet) 
2010–2017 

MRI, CT 

SPECT, PET 

Hypertensive 

encephalopathy of the 
brain 

12,00000 

https://aimi.stanford.

edu/medical-
imagenet 

3 
BraTS (Multimodal Brain 

Tumor Segmentation) 
2015–2021 

MRI (T1, T1 

contrast -
enhanced, T2) 

Ischemic stroke 
8000 

 
BraTS Dataset 

4 
MM-WHS (Multimodal 

Whole Heart segmentation) 
 MRI, CT whole heart segmentation 120 pairs MM-WHS 

5 
MSD (Medical 

segmentation Decathlon) 
2018 

MRI, CT, PET 
 

heart, liver, prostate, and 
brain 

2,633 -3D 
http://medicaldecathl

on.com/dataaws/ 

6 
TCIA (Cancer Imaging 

Archive) 
2011-2023 MRI, CT, PET 

lung, breast, brain, and 

prostate cancer. 
 

https://www.canceri

magingarchive.net/ 

VII. APPLICATIONS AND CASE STUDIES 

This section presents several recent case studies and 

applications for multimodal medical image fusion in 

diagnosis and treatment planning. Fusion of multi-scale 

and multi-modal imaging for disease detection, image-

guided interventions and surgical navigation.  Table 3 

shows the name of each case study, the fusion 

methodology applied, image modality, computational 

time, fusion result, and the dataset used in the study. 

 
TABLE 3. MIF applications and case studies 

No Study Modality 
Image 

location 

Fusion method 

(Algorithm) 

Computation

al time 

Fusion 

result 
dataset Notes Ref 

1 

MCFNet 

 

(multi-layer 

concatenation 
fusion network) 

(2019) 

 

CT /MRI 
256 × 256-

pixel brain 

an Encoder-
decoder 

Network (CNN) 

transformer 
(loss function is 

based on MSE 

loss) 

0.66 seconds 

Reduce time 

by getting 
max down-

sampling 

from 
CT&MRI 

And Up-

sampling to 
integrate 

features 

Outperform 

1- The 

Whole 

Brain Altas 
of Harvard. 

 

2- ILSVRC 
2013 

ImageNet 

optimizing 

the loss 
function 

[1] 

http://www.med.harvard.edu/AANLIB/
http://www.med.harvard.edu/AANLIB/
https://aimi.stanford.edu/medical-imagenet
https://aimi.stanford.edu/medical-imagenet
https://aimi.stanford.edu/medical-imagenet
https://www.med.upenn.edu/sbia/brats2021/data.html
https://www.ub.edu/mnms/M&Ms/M&M_2020/
http://medicaldecathlon.com/dataaws/
http://medicaldecathlon.com/dataaws/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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2 

IFCNN 

(Image fusion 
framework 

based on CNN) 

 

(2020) 

Multiple 

input image 
- 

Fully 
Connected 

CNN as three 

models (2 
Conv- layers for 

extracted 

features, Fused 
image, 2 Conv-

layer for 

reconstruct 

Good time 

because they 

have good 
hardware 

resources 

Outperform 
On 4 types 

of image 

dataset 

RGB-D 

(NYU-D2) 
100,000 

pairs of 

RGB 
resized to 

422x321 

and it is 
augmented 

to 

1,000,000 
images 

General 

model, 

dataset not 
specific for 

fusion 

[21] 

3 

MGMDcGAN 

(multi-generator 

multi-

discriminator 
conditional 

generative 

adversarial 
network) 

(2020) 

 

MRI-PET, 

CT-SPECT 
 

(different 

resolutions) 
 

brain-

hemispheric 

2 Models 

(GAN & 
cGAN2) 

GAN 1 

(generate First) 
GCN 2 (cGAN 

and mask 

enhancement 
information for 

dense structure 

in the final 
fused image) 

still, achieve 

comparable 

efficiency 

(multi-
process but 

stile in 

average time) 

Outperform

s compared 
with the 

existing 9 

fusion 
methods 

Harvard 

dataset. 

 

- 
[15] 

4 

DMC 

(Deep multi-
cascade fusion 

with Classifier-

based Feature 
Synthesis for 

Medical Multi-

modal Images) 

(2021) 

 

CT/MRI 
MR-T1/ 

MR-T2 

MRI/SPEC
T 

Brain disease 

256 x 256 

pixels 

Neural Network 

Autoencoder-
decoder t-SNE 

(t-distributed 

Stochastic 
Neighbor 

Embedding) 

- 

Outperform 

(qualitative 

and 
quantitative

) 

 

Whole 

Brain Atlas 
(WBA) 

74 pairs 

Transferred          
Ms-COCO 

datasets 

and pre-
trained 

[2] 

5 

TransFuse 

(2021) 

 

MRI/CT 
 

Tumer 

Segmentation 

(Pixels) 

Transformer-

based 
architecture 

(CNN) 

- 

Superior 

Performanc

e 

-  [39] 

6 

Multi-modal 
Fusion of 

Imaging and 

Genomic Data 
(2023) 

Genomic Breast Cancer DL-Based   

Cancer 

Genome 
Atlas Spark 

Dataset 

 [4] 

VIII. DISCUSSION 

In this paper, we have provided information covering 

various aspects of MIF, including data collection, pre-

processing, representation, classification models, 

evaluation methods, and datasets. Some models leveraged 

include CNN, GAN, and transform network, the CNNs 

extract features from input medical images, and the 

CNNs trained on a large labeled dataset of fused images. 

The big challenges for MIF are hardware resources which 

lead to building models during some hours or days, and 

limited datasets. data augmentation techniques tried to 

solve the limited dataset labeled. Overcome the problem 

of information loss in deep networks and lack of 

interpretability, these open problems need research in the 

future.  In general, the following describes challenges and 

future work for medical image fusion: 

A. Challenges and Limitations 

This section presents the recent challenges and 

limitations of MIF based on some criteria as follows: 

1. Interpretability and Explainability fused image: The 

fusion model based on DL for fused images must be 

easy to understand because they have the potential to 

impact patient care and clinical decision-making. 

Enhancing interpretability and explainability can be 

achieved through the use of visualization techniques, 

attention mechanisms, Layer-wise Relevance 

Propagation (LRP), and rule-based fusion [30]. The 

methods used by both approaches aim to determine 

the regions or features of interest in the most 

important input images and contribute the most to the 

fusion results. Saliency maps, Class activation maps, 

and gradient-based methods are just some examples 

of visualization techniques. In LRP relevance scores 

are assigned to input features to assist in 

understanding the significance of different features 

and elucidating the model's choices [31]. 

2. Generalization and robustness of fusion models: 

Challenges and limitations based on the 

generalization and robustness of fusion models 

across different datasets and modalities are explained 

in Table 4. 

Table 4. Challenges and limitations based on the generalization and 

robustness of fusion models 

 

The term Describe Ref 

Dataset bias 

Fusion models that were created for one 

dataset may not apply to new datasets due to 

differences in data distribution, imaging 
protocols, and acquisition parameters. 

[33] 
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Modality 

mismatch 

Fusion models that were trained in one 

modality may not perform well when applied 

to a different modality due to the specific 

characteristics and imaging principles of each 

modality. 

[19] 

Limited 

training 

data 

To learn representative features and generalize 

well, DL-based fusion models need a lot of 

labeled training data. It can be a challenge to 
obtain labeled data for fusion tasks, especially 

in medical imaging, as it requires expert 

annotations and privacy concerns. 

[34] 

Lack of 

ground 

truth 

It is difficult to objectively evaluate the 

generalization and robustness of fusion 
models across different datasets and 

modalities without ground truth 

[30] 

3. Data augmentation limitations in MIF: As explained 

by authors [32] these include limited availability of 

datasets, interpretability issues, computational 

complexity, and domain shift.  A domain shift can 

occur between augmented training data and real-

world testing data due to medical images not being 

fully captured by technicians. Applying this to 

unseen medical images can affect the performance of 

the fusion model. 

In addition to these challenges, hardware resources are 

considered one of the most important obstacles to 

completing MIF because the model algorithms require a 

computer with high specifications in terms of processing 

speed and storage capacity. MIF algorithms require a 

graphics processor unit (GPU) and a graphics card with 

high specifications, which can be expensive.  

B. Future Directions 

Future work in multimodal medical image fusion will 

aim at addressing issues such as the lack of objective 

evaluation metrics to assess the quality and usefulness of 

fused images accurately. The creation of evaluation 

metrics that match human perception and subjective 

measures from experienced observers is crucial, 

particularly in medical diagnosis tasks. Additionally, the 

challenges of using deep learning networks for image 

fusion include the computational cost and data 

requirements which need to be addressed in future work 

by developing lightweight fusion networks that reduce 

computational overhead and dependence on large 

datasets. Creating large datasets that cover different 

modalities, pathologies, and imaging protocols is 

necessary for publicly available benchmark datasets. 

Therefore, extending the use of multi-modal image fusion 

to different clinical applications is a crucial area for 

future work. For example, diagnosis, treatment planning, 

and image-guided interventions. The effectiveness of 

fusion methods must be validated in different clinical 

scenarios and patient populations. On the other hand, 

regarding the development of interpretable and 

explainable deep learning fusion models, there are some 

recent studies on the future directions in this part, one of 

them is a research paper that has been published in the 

Journal of Intelligent Manufacturing identifies an 

integrated method that merges a deep learning object 

detection model, a clustering algorithm, and a similarity 

algorithm to produce an automated detection process that 

can be explicated [35]. According to the study, the 

proposed method addresses multiple challenges that are 

posed by automated inspection and digital transformation.  

Another study [36] offers a guide for novices to 

explainable deep learning, three easy dimensions defined 

by the guide, define the space of foundational methods 

that contribute to explainable deep learning, as well as 

possible future. Future work in data augmentation focuses 

on advanced data augmentation techniques tailored to 

medical images. Some potential areas of research include 

modality-specific augmentation, spatial transformation 

augmentation, GANs for augmentation, domain 

adaptation augmentation, and uncertainty-aware 

augmentation. Overall, Clinical diagnostic requirements 

are not limited to the fusion of structural and functional 

image data, as in thyroid tumor diagnosis, which 

demands CT, MRI, SPECT, and B-ultrasound. Fusion 

between multiple modes and algorithm compatibility is a 

challenging task and another important area for future 

work. 

CONCLUSION 

In conclusion, medical image fusion using deep 

learning algorithms is hot research. This survey paper 

aims to give researchers, and healthcare professionals a 

complete understanding of the present state of deep 

learning algorithms, data augmentation methods, and 

transfer learning techniques. Medical imaging requires 

data augmentation to increase the size and diversity of 

training datasets, improve model accuracy, and overcome 

overfitting.  

The focus of future research should be on addressing 

challenges related to domain shift, computational 

complexity, and the realistic nature of synthetic data, 

while exploring advanced augmentation techniques 

designed for medical image fusion, leading to more 

accurate, informative, and clinically valuable fused 

medical images. 
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