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Perturbation-based Extremum Seeking 

Control Design for a Class of Nonlinear 

Systems 
 

 

 

 
Abstract — In this paper, we try to address the problem of 

output (performance) function by applying the 

Perturbation-based Extremum Seeking Control (PESC) 

approach to the observer of the Single-Input Single-Output 

(SISO) nonlinear systems. In this work, PESC is applied so 

that the performance function can reach its maximum 

value. We apply tow controllers design that will take care of 

maximizing of the cost function. First controller is designed 

in the availability of full and unknown variables which are 

fed to the objective function, and the second controller is 

designed when the full state availability is removed, and 

these variables become known by applying the High Gain 

Observer (HGO) model to estimate the system variables. 

The construction of a seeking algorithm is used to drive the 

system variables and the observer output to the desired set-

points that maximize the value of an objective 

(performance) function. In addition, Lyapunov's stability 

theorem and the perturbation theory including the 

averaging method are used in the design of the extremum 

seeking controller structure to check the stability of the 

system. Finally, the simulation results show the performance 

of the proposed procedures.  

 

Index Terms: Nonlinear system, high gain observer, and 

extremum seeking control. 

 

I. INTRODUCTION 

ll of the issues in control systems need to be 

addressed in order to survive in today's market. 

There are many techniques to achieve or to work on the 

above tasks or goals. The technique is: providing an 

effective control technique. It is well known that 

traditionally control includes two main objectives: 

modeling of the process (plant) and design the control 

algorithm for the process (plant). In the literature, 

researchers have spent much effort for modeling systems 

such as; linear and nonlinear systems. Nonlinear control 

systems are used as a feedback to produce a control 

signal mathematically based on other variables. 

    The output from this control system into the controlled 

process may be in the form of a directly variable signal. 

Sometimes this is not feasible and so, after calculating the 

current required corrective signal, the control system may 

repeatedly switch an actuator, such as a pump, motor or 

heater, fully on and then fully off again, regulating the 

duty cycle using pulse-width modulation. 

    The study of extremum seeking control and its 

application can be traced back to the early 20
th

 century. 

Many papers have reviewed earlier works in this field and 

shown good results [1-7]. Solar cells, blade orientation 

control in water turbines and wind mills, combustion 

processes in engines and generating plants are among the 

main applications.  

    The goal of extremum seeking is to find the operating 

setpoints that maximize or minimize an objective 

function. Since the early research work on extremum 

control in the 1920's (Leblanc 1922), many successful 

applications of extremum control approaches have been 

reported (e.g., (Vasu 1957), (Astrom and Wittenmark 

1995), (Sternby 1980) and (Drkunov et al. 1995)). 

Recently, Krstic et. al ((Krstic 2000), (Krstic and Deng 

1998)) presented several extremum control schemes and 

stability analysis for extremum-seeking of linear 

unknown systems and a class of general nonlinear 

systems ((Krstic 2000) and (Krstic and Deng 1998)) [8]. 

Krstic and Wang extended his study to an extremum 

seeking feedback scheme for general nonlinear systems 

with stability analysis, but not on the observer of the 

nonlinear system. Fu, Lina focuses on model-based 

extremum seeking control, and develops control design to 

integrate system control and optimization without time-

scale separation. It aims to achieve faster convergence as 

well as better robustness for general nonlinear systems 

[9]. The inclusion of a dynamic compensator in the 

extremum seeking algorithm which improves the stability 

and performance properties of the method is presented by 

Miroslav Krstic in [10]. After this little literature review 

on PESC, we can conclude that the work of the PESC of 

the observer of the nonlinear systems under the required 

conditions is not done yet, so in this work we design the 

controller that can take care of the minimum of the cost 
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function that can be applied on the observer of the 

nonlinear systems. 

II. SISO NONLINEAR SYSTEMS 

    In this section, we work on the state feedback 

linearizable (SFL) systems as Raul Ordonez and Chunlei 

Zhang have done in chapter 5 in [11]. In other words, the 

difference here is that we work and design a different 

controller that lets the cost function reaches its maximum. 

 

A. Proplem Statement  

        Consider the nonlinear system 

 

( ) ( ) .x f x g x u     (1) 

 

    The output is measured by full states and considered as 

the cost function that we are going to maximize. This cost 

function is not actually the output of the system, and it is 

described as 

 

( )y J x    (2) 

where nx is the system states u  is the input, and 
ny is the performance output which must be convex 

on the domain D  where nD which means that the 

stationary point condition becomes a necessary and 

sufficient condition to identify a global maximizer. 

 

Assumptions 2.1.1. The nonlinear system should be state 

feedback linearizable, and it should satisfy 

 

( 1)

( )
( ) 0,

( )
( ) 0,

( )
( ) ( ),

i

h

i

j

dT x
g x

dx

dT x
g x

dx

dT x
T x f x

dx



 

 



 

where 1, 2, , 1,i n   and  2,3, , ,j n  and also 

 

1 1

2 2

( )

( )
( ) .

( )n n

z T x

z T x
T x

z T x

   
   
    
   
   
   

 

    It is possible here to devise a controller ( )u t and a 

coordinate transformation ( )z T x such that the 

application of the controller ( )u t  results in a linear 

system in z-coordinates. Actually, all this can happen 

depending on the actual system dynamics. As we 

mentioned in the Assumptions 2.1.1, the system in state 

feedback linearizable, so the system can be transferred to 

the form ( )z T x which is called a diffeomorphism if the 

: n nT  is continuous and differentiable )
1(C and 

also ( )
1

T x


exists. 

    The diffeomorphism here is going to result in a 

transferred system in the dynamics of z-coordinates to the 

form: 

1 2

2 3

3 4

1

   

ˆ ˆ( ) ( )

n n

n

z z

z z

z z

z z

z f z g z u











 

  (3) 

Rewriting the system in another form will lead us to the 

form: 

ˆ ˆ( ( ) ( ) )z Az B f z g z u     (4) 

where  (A;B) is controllable canonical form which is 

 

( 1) 1 1 ( 1) 1

1 ( 1)

0 0
,          ,

0 0 1

n n n

n

I
A B

    

 

   
    

  
 

and ˆ ˆ( ) ( ( ))g z g T x is non-singular for all x. The system 

(3) is still a nonlinear system, and this form is called a 

chain of n integrators. So, we need to design a controller 

so that the system (3) can be linearizable.  

 

B. Perturbation Based System Extremum Seeking 

control for SFL  

    To design the controller, we have to take care of some 

errors dynamics in the system. In this case of problem, 

we have to deal with some error dynamics, and these two 

errors should go as close as possible to zero when the 

time goes to infinity. 

 

Suppose that we know a smooth control law 

 

1 ˆ[ ( ) ]
ˆ ( )

( ) ( , ) f z Kz
g z

u t z                    (5) 

parameterized by a scalar parameter   , and 

1
T

k knK     . The assumption that  ,   and y are 

scalars is also for simplicity; it can be trivially removed 

by using vectors of appropriate dimensions.  

 

After we substitute the controller, the system becomes  

 

,z Az B             (6) 

where A and B  are defined as 

 

0 1 0 0 0

0 0 1 0 0

,       .

0 0 0 1 0

11 2 3

A B

k k k kn

   
   
   
    
   
   
         

 

    

   The analysis that follows employs the method of 

averaging. Let 
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( ),h

h

J z
s








           (7) 

where ( )J z y  is the cost function that will be 

maximized, and 

h

s

s 
is High-Pass Filter (HPF). Then, 

the signal after the washout filter (High-Pass Filter) can 

be expressed as 

 

.h

h h

s
y y y y

s s




 
     

 
     (8) 

The closed-loop system in (6) and 

 

ˆ( , ),z                   (9) 

then have equilibria parameterized by   and ̂ . We 

make the following assumptions about the closed-loop 

system. 

 

Assumption 2.2.2. There exists a smooth function  

: nl   such that 

 

0

ˆ  ( , ) 0

Az B

z



 

 


      (10) 

if and only if ( )  z l  or ˆ( )z l  . 

 

Assumption 2.2.2. For each ̂  and   , the 

equilibrium ˆ( )z l  and ( )  z l  of the system (10). 

From the system (6) it is clear that all the equilibrium of z 

is zero except 1z , then we work on the equilibrium 

ˆ( )z l   which is locally exponentially stable with decay 

and overshoot constants uniform in ̂ . 

    Hence, we assume that we have a control law (5) 

which is robust with respect to its own parameter   in 

the sense that it exponentially stabilizes any of the 

equilibria that   may produce. Except for the 

requirement that Assumption 2.2.2 holds for any    

(which we impose only for notational convenience and 

can easily relax to an interval in  ), this assumption is 

not restrictive. It simply means that we have a control law 

designed for local stabilization and this control law need 

not be based on modeling knowledge of either ( )Az B  

or ˆ( )l  . 

    The next assumption is central to the problem of peak 

seeking. 

 

Assumption 2.2.3. There exists *  such that 

 
*( ) ( ) 0,Jol      (11) 

*( ) ( ) 0.Jol      (12) 

Thus, we assume that the output equilibrium map 

ˆ( ( ))y J l  has a maximum at 
*̂  . Our objective is to 

develop a feedback mechanism which maximize the 

steady-state value of y but without requiring the 

knowledge of either *  or the functions J and l . Our 

assumption that is Jol has a maximum without loss of 

generality. 

    In the feedback scheme, it employs a slow periodic 

perturbation cos( )a t  which is added to the signal ̂  

that is estimated by * , and a also needs to be small. The 

high-pass filter / hs s  eliminates the “DC component” 

of y , so the product of the HPF will be extracted by Low-

Pass Filter (LPF) which is /l ls  . 

    The selection of design parameters is indeed intricate, 

so these parameters are selected as 

 

( ),h H H O          (13) 

( ),l L L O              (14) 

( ),k K K O       (15) 

where   and   are small positive constants and 

, ,H L    and K  are (1)O  positive constants.  

    From (13) and (14) we see that the cut-off frequencies 

of the filters need to be lower than the frequency of the 

perturbation signal. In addition, the adaptation gain k 

needs to be small [12]. 

    Now, we analyze the stability of the system. But before 

the analysis, we summarize the system as follows 

 

( , sin( ))

sin( )

.

l l

h

z Az B

z a t

k

t



   

 

   

 

 

 



   

 

        (16) 

Now, we introduce the new coordinates as 

 
*       (17) 
*       (18) 

*( ( )).J l       (19) 

Then, in the time scale t  , the system (16) is 

rewritten as 

 
*

*

( )

( , sin( ))

z Az B

z a

  

    

  

  
           (20) 

 

*

*

[ ( ( )

     ( ( )) )sin( )]

[ ( ( ) ( ( )) )].

L L

H

K

J z

J l

J z J l

  

    

  

    



   

 

  

         (21) 
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C. Stability Analysis of State Feedback Linearizable 

Nonlinear Systems 

     Stability analysis of systems is required to check the 

stability of the whole system dynamics including control 

dynamics. 

    The system (20) is in standard singular perturbation 

form, where the singular perturbation parameter is  . To 

obtain the fast and slow systems, we set 0   and 

“freeze” z at its “equilibrium value” 

 
*( sin( )).z l a            (22) 

Now, we study the system (21) and substitute (22) into 

(21) to get the “reduced system” 

 

[ ( ( sin( ))

      ) sin( )]

[ ( sin( ))].

r r

r L r L r

r

r H r H r

K

v a

v a

  

      

 

      



    



    

              (23) 

where 
*( sin( )) ( ( sin( )))r rv a J l a        *( ( )),J l   

and it must satisfy that 

 

*

*

(0) 0

(0) ( ( )) | 0

(0) ( ( )) | 0.

v

v J l

v J l

 

 











  

  

                   (24) 

    In the study of dynamical systems, the method of 

averaging is used to study certain time-varying systems 

by analyzing easier, time-invariant systems obtained by 

averaging the original system.  

 

The averaging model for every system with period T is 

 

0

1
( , ,0) ( ).

T

avg avgx f x d f x
T

        (25) 

    Now, we apply averaging model form in (25) to the 

system (23), and we get 

 

2

0

2

0

[ (
2

         sin( ))sin( ) ]

[ (
2

          sin( )) ].

avg avg

r r

avg avg avgL

r L r r

avg avg avgH

r H r r

K

v

a d

v

a d





  


    



  


    



 




  




  







          (26) 

    Then, the average equilibrium ( , , )avg avg avg

r r r    which 

satisfies 

 

0,avg

r                    (27) 

2

0
( sin( ))sin( ) 0,avg

rv a d


                    (28) 

2

0

1
( sin( )) .

2

avg avg

r rv a d


   


                (29) 

 

By postulating 
avg

r  in the form 

 
2 3

1 2 ( ),avg

r b a b a O a      (30) 

substituting in (28), using (24), integrating, and equating 

the like power of a, we get 1(0) 0v b  and 

2

1
(0) (0) 0

8
v b v   , which implies that 

 

2 3(0)
( ).

8 (0)

avg

r

v
a O a

v



  


    (31) 

Also by using same calculations, we get 

 

2 3(0)
( ).

4

avg

r

v
a O a


     (32) 

Thus, the equilibrium of the averaging model (26) is 

2 3

2 3

(0)
( )

8 (0)

0

(0)
( ).

4

avg

r

avg

r

avg

r

v
a O a

v

v
a O a








  






  

            (33) 

Then, the Jacobian of (26) at ( , , )avg avg avg

r r r    is 

 

2

0

2

0

.

0 0

( sin( ))sin( ) 0
2

( sin( )) 0
2

avgL

r L

avgH

r H

avg

r

K

J v a d

v a d






     




   



 
 

 
   

 
 
  
  





 

 (34) 

Since 
avg

r
J is Hurwitz if and only if 

 

2

0
( sin( ))sin( ) 0.

2

avgL

rv a d


   



        (35) 

By using (24), we get 

 
2

2

0
( sin( ))sin( ) (0) ( )

2

avgL

rv a d v a O a


    



      (36) 

 

     which is clear to see that it is less than zero if a is 

chosen sufficiently small. This implies that the 

equilibrium of the average system (26) is exponentially 

stable. 

 

Theorem 2.3.1. Consider system (20) under Assumption 

2.2.3. There exist  and a  such that for all 

0,  and  a a    system (23) has a unique 

exponentially stable periodic solution 
2 2 2( ( ), ( ), ( ))r r r

         of period 2 and this solution 

satisfies 
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2 2

2

2 2

3
| | ( ) ( ), 0.

(0)
( )

8 (0)

( )

(0)
( )

4

r

r

r

O O a

v
a

v

v
a







 

 

 

 

   

 
 

 
 
 
 
  

     (37) 

    This result, along with the triangle inequality, implies 

that all solutions ( ( ), ( ), ( ))r r r      converge to an 

3( )O a  -neighborhood of the origin. In other words, 

these solutions converge as close as possible to zero. It is 

important to interpret this result in terms of the system 

(21).  

Since  
*( ( sin( ))),ry J l a     we have 

 
* *

* 2

3

( ( )) ( ( ))( ) sin( ))

     ( ( ))( sin( ))

     (( sin( )) ),

r

r

r

y J l J l a

J l a

O a

   

  

 

  

 

 

    (38) 

 

where, *( ( )) 0,J l    and then 

* * 2

3

( ( )) ( ( ))( sin( ))

     (( sin( )) ),

r

r

y J l J l a

O a

   

 

  

 
      (39) 

where, 
*

2 2 2

*

*
2

*

( ( ))
sin( ) ( ) ( )

8 ( ( ))

( ( ))
                     sin( ).

8 ( ( ))

r r r r

J l
a a

J l

J l
a a

J l

  
    









    




 



     (40) 

Since the first term converges to zero, the second term is 
3( ),O a  the third term is 2( )O a  and the fourth term is 

( ),O a  then we conclude 

 

* 2 2

sin( ) ( )

( ( )) ( ).

r a O a

y J l O a

  

 

  

  
  (41) 

Now, we address the full system whose state space model 

is given by (20) and (21) in the time scale t  . 

 

    By Theorem 2.3.1, there exists an exponentially stable 

periodic solution 
2 2 2( ( ), ( ), ( ))r r r

         such that 

 

2 2

2 2 2

2

2 2 2

[ ( (

         sin( )) )sin( )]

[ (

          sin( ))].

r r

r L r L r

r

r H r H r

K

v

a

v

a

 

  



  

  

     

  

     





   

 

   



   (42) 

    To bring the system (20) and (21) into the standard 

singular perturbation form, we shift the state s where 

( , , )s     using the transformation 

 
2

rs s s      (43) 

and then we get 

 
*

2 *

1

( )

( , sin( ))r

z Az B

z s a

  

    

  

   
              (44)            

 
2 2[ ( , , ) ( , )].r rs G z s s G s           (45) 

Then, we note that 

 
2( , )rz L s s        (46) 

is the quasi-steady state, and that the reduced model 

 
2 2( , ( , ), )r r rs G L s s s s         (47) 

has an equilibrium at the origin 0rs  . Also, to complete 

the singular perturbation analysis, we study the boundary 

layer model when 2( , ),rz z L s s     then 

 

2 2

1

*

1
( ( , ),

      sin( ))

1 ˆ ˆ  ( ( ), )

r rz L s s s

a

z l

    


 

  


   

 

 

         (48) 

 

where 
*ˆ ( sin( ))a      . Since ˆ ˆ( ( ), ) 0l    , then 

0z   is an equilibrium of (48). By Assumption 3.2.2, 

this equilibrium is exponentially stable uniformly in ̂ . 

 

    Now, from the system (44.1) when 
*( )z z l    

which satisfies ( )  z l  or ˆ( )z l   in Assumption 

2.2.2, we get 

 

* *1
[ ( ) ]

1
  [ ].

z Az Al B B

Az B

  





   

 

         (49) 

where 
* *( ) 0.Al B    Then, we note that ˆ( ),l z   

and since we proved that 0,z   then also 0  . 

 

D. Example and Results 

     Consider the nonlinear system 

 

1 2

2

2 1

( )

x x

x x u

y J x



 



   (50) 

where the cost function after we apply the SFL system is 

 
2

1 2 1 2

2

( ) ( 3 ) 10( 3 ) 1

ˆ ˆ       ( ) 10( ) 1,

J z z z z z

 

     

   
    (51) 

and ˆ( , )z   is picked as 
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1 2

1 2

ˆ ˆ( , ) 3

           3 sin( ).

z z z

z z a t

  

 

  

   
           (52) 

where 
*̂  is the maximizer of the cost function 

( ( ))J l   that has a maximum at  . The picked gains are 

1 8k   and 2 6k  . Here, we let the frequency 

perturbation 0.11  , amplitude perturbation 

0.05, 0.011, 0.011,hk     and 0.011l  . Next 

figures show the results of the system and the controller 

design. The initial conditions are 

1 2(0) 1, (0) 1, (0) (0) (0) 0.z z          

 

    In this study, we investigate an alternative extremum 

seeking scheme for nonlinear plant. The proposed scheme 

utilizes an explicit structure information of the objective 

function that depends on the full states availability. 

However, it is assumed that the objective function is not 

available for measurement. Next figures show the result 

of this example. 

 
Figure. 1. Plot of the Plant States. 

 

 

 
Fig. 2: Performance Function. 

 

   As shown in Figure. 1 that the plant states in z-

dynamics, and in Figure. 2 that the cost function is driven 

to its maximum value which is 26J  . 

 
Figure. 3.Maximizer of the Cost Function ̂ . 

 

 
Figure. 4. Feedback Control Variables or States:  

, ,     and  . 
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Figure. 5.Controller. 

 

    Also, we can see in Fig. 3 that the maximizer ̂  is 

driven to value * 5   that maximizes the cost function 

J . Fig. 4 shows that the feedback control variables are 

driven smoothly to their values, and Fig. 5 shows that the 

controller of the system is driven to -25. 

 

III. OBSERVER OF SISO NONLINEAR 

SYSTEMS 

    In this section, we extend the work on (SFL) systems 

to be also input-output feedback linearizable (IOFL) 

systems. In this problem, we design a cost function for 

the mentioned system under some conditions, and we 

design a controller that lets the system's output drive the 

cost function to the minimum. The way to design the 

controller for SFL systems it is different from the design 

of the controller for both SFL and IOFL systems. 

 

A. Problem Statement  

    Consider the SISO nonlinear system 

 

( ) ( )

( )

x f x g x u

y h x

 


     (53) 

    where nx is the system states, u  is the input, 

(.)f  and (.)g  are smooth functions and depend only on 

,x y  is the output of the system of the state x  at time 

,t  and the output is measured by states and the 

assumption of full state availability is removed in the 

output. 

 

The considered cost function 

 

( )J F x       (54) 

is not actually the output of the system, and it is assumed 

as we mentioned in (2) and Assumption 2.2.3 but in this 

case the cost function that we are maximizing is fed by 

the estimated states in the form 0
ˆ ˆ( ).J F x  

 

    Assumptions 3.1.1. This assumption is the same as the 

assumption in (2.1.1), but we add here two more 

assumptions to the system as follows: 

 

1- Input-Output feedback linearizable. 

2- Linear output function. 

 

Now by transferring the system (53) to the state feedback 

linearizable form, we get the same form in the system (4) 

which is 

 

ˆ ˆ( ( ) ( ) )

 ( , )

( )

z Az B f z g z u

Az BG z u

y h z Cz

  

 

 

      (55) 

where (A;B) is controllable canonical form which is 

 

( 1) 1 1 ( 1) 1

1 ( 1)

1 ( 1)

0 0
,     ,

0 0 1

                    1 0 ,

n n n

n

n

I
A B

C

    

 

 

   
    

  

   

 

and ˆ ˆ( ) ( ( ))g z z g T x  is non-singular for all x , and 

ˆ ˆ( , ) ( ) ( )G z u f z g z u   which is : n nG   is globally 

Lipschitz continuous and uniformly in t . In this part, we 

want to estimate the state z  from the available signals 

u and y  by applying the High Gain Observer (HGO) to 

the system (54). The reason of using the High Gain 

Observer (HGO) superior to others is that in the 

estimation of the variables of any system, the HGO gives 

very good estimation.  

 

Here, we look for an “observer” of the state of the form 

 

0

ˆ ˆ ˆˆ ˆ ˆ ˆ( ( ) ( ) ) ( )

ˆˆ ˆ ( , ) ( )

ˆ

z Az B f z g z u H y y

Az BG z u H y y

y Cz

    

   



 (56) 

where  1 2

T

nH h h h , and 

0
ˆ ˆˆ ˆ ˆ( , ) ( ) ( )G z u f z g z u  is a nominal model of ( , )G z u  . 

 

B. Perturbation-based Extremum Seeking Control 

Design for IOFL System 

    To design the PES controller, we have to deal with 

some errors dynamics. Some of the errors in this case of 

problem we already worked in Section II, and these errors 

should go as close as possible to zero when the time goes 

to infinity. The mean error in this section is the error 

between the really states and the observer states.  

    We analyze the high pass filter as we have done before 

but the difference here is that the HPF is multiplies by the 

estimated cost function. The errors that we have 

mentioned in Section II are the same, and we present here 

the following error. 

    Including to the errors that we worked on in the 

previous section, we added in this section an error that we 
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deal with in this case which is ˆ( )e t z z   . This error 

leads us to the error dynamics  

 

0

ˆ

ˆ( ) [ ( , ) ( , )]

ˆ( ) ( , , ),

e z z

e A HC e B G z u G z u

e A HC e BL z z u

 

   

  

      (57) 

where ( 0
ˆ ˆ( , , ) ( , ) ( , )L z z u G z u G z u  . Note that it is 

possible to modify the dynamics (eigenvalues) of the 

error system by proper selection of the gain H. If the 

system is observable as we assume, it is always possible 

to find an observer gain H to set the eigenvalues of the 

error dynamics at arbitrary values, and we want to design 

H such that lim 0e   when  t   . 

    In the absence of ˆ( , , )L z z u  or 0G G u   in (55) and 

(56), asymptotic error convergence is achieved by 

designing H such that 0 ( )A A HC  is Hurwitz (i.e. all 

its eigenvalues are on the left-half complex plane). In the 

presence of ˆ( , , )L z z u , we need to design H with the goal 

of rejecting the effect of ˆ( , , )L z z u  on e . 

    This is ideally achieved, for any ˆ( , , )L z z u , if the 

transfer function ( )G s  from ˆ( , , )L z z u  to e  is ideally 

zero. This is impossible, but we can make sup | ( ) |G j  

arbitrarily small by choosing 

.121   nnn hhh  

So, we can let 1 2

1 2 2
, , , n

n n
h h h

 

  
    for some 

positive constants 1 2, , , 0n    , and with   

arbitrarily small constant 0 1.   This should satisfy 

that lim ( ) 0G s   when 0  . 

    The observer eigenvalue is /i  , where i , 

1,2, , ,i n , is the roots of 

 
1

1 0

  sup || ( ) || ( )

n n

n

G j O

   

 

   


 

    In other words, the eigenvalues of the observer are 

assigned at 1/   times the roots of the polynomial 
1 2

1 2 1

n n n

n ns s s s    

     . Therefore, 

choosing   sufficiently small lets the observer dynamics 

much faster than the closed-loop system under the state 

feedback system in (55). 

     

   Now, we introduce another estimation error by letting 

( , )Q e   where i

i n i

e


 
  , and 1, 2, ,i n .  Then 

the newly defined variables satisfy the singularly 

perturbed equation, and the error dynamics becomes 

 

ˆ( ) ( , , )A HC BL z z u         (58) 

   This equation shows clearly that reducing   diminishes 

the effect of ˆ( , , )L z z u  and makes the dynamics of   

much faster than those of z. However, the scaling 

i

i n i

e


 
  shows that the transient response of the high 

gain observer suffers from a peaking phenomenon.  

     Now, we keep getting the derivative of the observer 

output ˆ ˆ( )y h z  until the controller must not vanish at n-

derivative of the dynamics as 

 

ˆ ˆ ˆ( , ) ( ) .
n

y z z g z u       (59) 

which can be globally stabilized by the state feedback 

controller or output controller. In other words, the system 

must has relative degree n where the relative degree N = 

n + d where d = 0. Then, the controller will be taken as 

 

1
ˆ ˆ ˆ( , , ) [ ( , ) ( ) ],

ˆ( )
u z z z z v z

g z
   


       (60) 

where ˆ( ) 0g z   for all ẑ , and 

1 1 2 2
ˆ ˆ ˆ ˆ( ) n nv z k z k z k z   . The dynamics of the system 

including the feedback system will be 

 

0

( , )

ˆˆ ˆ ˆ( , ) ( )

ˆ( , sin( ))

sin( )

.

l l

h

z Az B z u

z Az BG z u H y y

z a t

k

t

   

 

   

 

 

   

 



   

 

         (61) 

    Then, in the time scale t  , the system (61) is 

rewritten in new coordinates, and we keep the coordinates 

that we have worked on in Section II in (17), (18), and 

(19) as 

 

0

( , )

ˆ
ˆˆ ˆ ( , ) ( )

ˆ ( , sin( ))

dz
Az B z u

d

dz
Az BG z u H y y

d

d
z a

d







  



 

   

 

      (62) 

 

*

*

ˆ[ ( )

        ( ( )) )sin( )]

ˆ[ ( ( ) ( ( )) )].

L L

H

d
K

d

d
J z

d

J l

d
J z J l

d


 




   



  


   





   

 

  

    (63) 

    Now, we work on the error dynamics of   in (58) in 

the mentioned time scale, and we keep (17), (18), and 

(19) the same because they lead us to the same results.  

 

   Then, the new observer error will be we get 
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0

ˆ( ) ( , , )

ˆ          ( , , )

d
A HC BL z z u

d

A BL z z u


  



 

  

 

      (64) 

where 0A is stable and its eigenvalues are located on the 

left-half complex plane which means that 0 0A  . 

 

C. Stability Analysis of Input-Output Feedback 

Linearizable Nonliear Systems 

In this section, we study the error dynamic in (64) 

which is seen clearly that reducing   decreases the effect 

of ˆ( , , )L z z u .In the behavior of the peaking phenomenon, 

it is clearly to see that (0)  will be in (1 / )O   

whenever ˆ(0) (0)z z . Then, the solution of ( )t will 

have the term 1 /(1/ ) te     for some 0a  . Although 

this exponential mode decays rapidly, it exhibits an 

impulsive-like behavior where the transient peaks to the 

neighborhood of 1/  values before it decays rapidly 

towards zero. 

    In fact, 1 /( / ) ta e   approaches an impulse function 

as 0  . In the peaking phenomenon method, the 

controller can be driven out of its region of attraction, 

thereby finally causing instability. 

     We still can get good results as in the example results 

in Section II.D later, but that does not always guaranteed. 

To solve the problem of the peaking phenomenon, we 

know that this phenomenon is an artifact of the high-gain 

observer. Therefore, we should disregard the large, 

unrealistic values of the state estimate. To do so, we can 

design the function 0
ˆ( , )G z u to be globally bounded in ẑ . 

For the control law ( )u t , it will be bounded by applying 

the saturation function. Therefore, this boundedness can 

be always achieved by saturating ( )u t  outside compact 

region of interest so that ( )u t  is a globally bounded 

function. Then, the destabilizing effect by adapting the 

saturation approach will be reduced. The saturating of 

( )u t  and the global boundedness of 0
ˆ( , )G z u  in ẑ  

provides a buffer that protects the plant from peaking 

because during the peaking period, the control ( )u t  

saturates. Because the peaking period shrinks to zero as 

  tends to zero, for sufficiently small  , the peaking 

period is so small that the state of the plant z  remains 

close to its initial value. Consequently, the trajectories of 

the closed-loop system under the output feedback 

controller approach its trajectories under the state 

feedback controller as   tends to zero. This leads to 

recovery of the performance achieved under state 

feedback [13,14]. 

    Let ( )V z  be a Lyapunov function for the slow 

subsystem which is guaranteed to exist for any stabilizing 

state feedback control by the converse Lyapunov 

theorem. Let 0( ) T

avg avg avgW P    be a Lyapunov 

function for the fast subsystem, where 0 0

TP P  is the 

positive definite solution of the Lyapunov equation 

0 0 0 0

TP A A P I    where 0A A HC  , and this can be 

proved by repeating the arguments in [14]. 

    Now, we analysis the stability to study the system (63) 

as we have done to the system (21) while we “freeze” 

here ẑ  in (62) at its equilibrium value 

 

2, , 1 1

*

1 2 1 1

ˆ ( )

ˆ      ( ( ), sin( ))

nz f

z f f a



   



  
      (65) 

and substitute it into (63), and we get the same reduced 

system in (23) where the only difference between the 

system (21) and the system (64) is that the system (63) is 

fed by the function ˆ ˆ( )J z  instead of ( )J z . The errors 

proof of the system (63) is the same as in (21). 

    From (41), it is clear to see the same results here while 

we have the same assumption for Ĵ  as we have with J . 

From the error 1 2
ˆ ˆ ( , )z z f f  , and then its dynamics 

will be 

0 1
ˆ ˆ( , , )z z   .               (66) 

From (66), it is clear to see that the equilibrum of 

1 1
ˆ ( , )z    where ( )O a    and 1 ( )O  . Also, 

we study the error of the second equation in (62) which 

is 1
ˆ ˆ ( , )z z    , so the dynamics of this error will be 

 

* *

2 1
ˆ ˆ( ( , ), , )z z          .    (67) 

    Then, we conclude that   is the solution of this 

equation which is 3
ˆ( , )z   where ẑ   and   are near 

to zero.  

    Also, we study the error of the first equation in (62) 

which is described as 4
ˆ( , , )z z z    , and then the 

dynamics of this error will be 

 
*

5

*

5 4

*

5 4 1 2

*

( , , )

  ( ( , , ) , , )

ˆ  ( ( ( , ), , )

  , , )

z z

z z

z z f f

   

     

  

   

  

   

   

 

 .      (68) 

     From (68), we conclude that the equilibrum is 

6
ˆ( , , ) (0)z z O   where ˆ,z   and   are very close 

to zero. 

    Now, we conclude that all errors ˆ( , , , , , )z z      go as 

close as possible to zero. In the observer part, we 

investigate an alternative perturbation-based extremum 

seeking scheme for the observer of nonlinear plant under 

the given assumptions. The proposed scheme utilizes an 

explicit structure information of the objective function 

that depends on the observer output plant and a new state 

from the controller. However, it is assumed that the 

objective function is not available for measurement. 

 

D. Examples and Results 

Consider the SISO nonlinear system (1) as 
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where ( )J x  is the cost function which is estimated as 
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and ˆˆ( , )z   is picked as 
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where 
*̂   is the maximizer of the cost function 

ˆˆ( ( ))J l   that has a maximum at ̂ . 

    Here, we let the frequency perturbation 0.2  , 

amplitude perturbation 0.05, 0.1, 0.1lk    , 

and 0.1h  . The high gain observer gains are; 

1 2 1   and the variable 0.01  with initial 

conditions 1 2 1̂(0) 0.1, (0) 0.2, (0) 0.11z z z    , and 

2
ˆ (0) 0.22z   . Also, (0) (0) (0) 0     . Next 

figures show the results of the system and the controller 

design. 

 

 
Figure. 6. Plot of Real and Estimated States of SFL System. 

 

Figure. 7.Estimated Performance Function ˆ ˆ( )J z . 

 

 

Figure. 8.Maximizer of the Cost Function ̂ . 

 

 
Figure. 9. Feedback control Variables or States:  

, ,     and  . 
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Figure. 10. PES Controller. 

 

    As shown in Fig. 6, the observer is working very well 

by tracking the real states 1 2( , )z z to the estimated states 

1 2
ˆ ˆ( , )z z , and as we see that the error of tracking is very 

small and barely we see the difference. They track each 

other in very short time because her we assume that their 

initial conditions are very close. It is clear that the real 

states are driven or tracked to the estimated states in very 

short time.  Also, in Fig. 7 it is shown that the estimated 

cost function is driven to its maximum value ˆ 2J   by 

the maximizer ˆ 1   which is shown in Fig. 8. Again, in 

Fig. 6, the small   the fast tracking between z  and ẑ . 

The feedback control variables; , ,     and  are driven 

to their values smoothly as in Fig. 9. The controller result 

is going to zero as in Fig. 10.  

 

IV. CONCLUSION 

    The control approach, PESC, solves a new 

performance (cost) function problem for driving this 

function to the maximum value and keeps the system in 

stable case. A stability analysis technique is used to 

approximate the unknown function and to steer the 

system to its unknown extremum. From the experience of 

extremum seeking control design, the new proposal based 

dynamic control approach is easy to understand and not 

easy to implement, which makes it quite practical. Our 

proof covers only one implementation of extremum 

control which is the method with a periodic perturbation.  

This approach is applied to the observer of the Single-

Input Single-Output (SISO) nonlinear systems so that the 

performance function can reach its maximum value. The 

tow applied controllers take care of the maximizing of the 

cost function. From all of the obtained results, we can say 

that this controller (PESC) is working very well under the 

given conditions and with certain initial conditions. As a 

future work, the extremum seeking control design for the 

observer SISO discrete-time nonlinear systems may be 

investigated.   
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