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Abstract - The Magnetic Barkhausen noise (MBN) technique 

measures discrete changes in magnetization, known as 

“Barkhausen jumps”, which can be seen as steps in the 
hysteresis curve. When a ferro-magnetic material is 

subjected to an external varying magnetic field, the 

magnetization of the material will change in a non-linear 

way.  These changes in magnetization are described by the 

hysteresis curve and are the result of modifications of 
domain structure of the material.  Changes in magnetization 

are caused by domain wall creation, domain wall 

annihilation, domain wall motion and rotation.  In order to 

improve the interpretation of Barkhausen noise, models are 

needed which describe the dependence of magnetization on 
material properties. 

Index Terms—Hysteresis, Barkhausen noise, susceptibility, 

permeability. 

I. INTRODUCTION 

A. Barkhausen Noise and Magnetic Hysteresis 

 here  is  a  close  connection  between   the   rectified 

        Barkhausen noise output and BH loops. In effect, 

BH loops are obtained experimentally using a similar 

experimental setup as the former. It is worth recalling 

how BH curves for ferromagnetic materials are obtained 

with the trad itional method using elementary equipment. 

Absolute BH data are difficult to obtain using anything 

other than specimens machined in a toroidal form (e.g. 

Fig. 1).  

The magnetic field H is easily determined from the 

primary current with a closed magnetic circuit, as in Fig . 

1. The field for the toroid is directly proportional to the 

current I in the primary coil by the following expression:  

𝐻 = 𝑁𝑃 𝐼/𝐿                  (1) 

where Np is the number of turns in  the primary  coil and 

L is the length of the coil. The field is more difficult to 

measure or calcu late with other specimen forms because 

of magnetic leakage or demagnetizing effects. The 

secondary windings (Fig.1) are connected to a flux meter 

or a ballistic galvanometer. The primary circuit also 

includes a current reversing switch that is used in the 

following procedure. 
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Figure 1. Schematic Illustration of Traditional Apparatus for BH Loop 

Determination 

The specimen is first demagnetized, and then the 

applied field is raised in predetermined steps to obtain 

data for the magnetization curve (OAB in Fig. 2). Let us 

assume that we are at the stage where the field  

corresponds to point A in Fig. 2. With the flux meter or 

ballistic galvanometer short-circuited or isolated, the 

current is then reversed several times. This has the effect 

of taking the specimen  around the hysteresis loop (Fig. 2) 

a few t imes to reach an equilib rium state. Finally, the 

fluxmeter is connected to the circuit, the current is 

reversed one more time and the flux meter is recorded.  

The flux density B can be calcu lated using the 

fluxmeter reading. However, to understand the basics of 

the measurement, it is worth considering how flux is 

measured with a ballistic galvanometer. Th is instrument 

has very low damping. If the current I passes for a time t 

that is so short that the coil has no time to move 

appreciably, the impulse (product of force and time) 

given to the coil is proportional to the product It. But It is 

the total charge Q that passed through the galvanometer. 

It can be shown that the maximum swing of the 

instrument is proportional to the impulse and thus 

proportional to Q. The relation between the flux change 

and the total charge flowing in the secondary circuit is:  

s

QR

N
     (2) 
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where R  and Ns  are the resistance and number of  turns 

in the secondary windings, respectively.  

Finally, we note that ∆Φ = Φ − (− Φ) = 2Φ in the 

above experiment and that flux density B  = Φ/A, where A  

is the area of cross section of the specimen. Thus, a pair 

values (H, B) can be determined from these 

measurements. 

The procedure is repeated for increasing values of the 

field to obtain points along the curve OAB. The complete 

hysteresis curve can be obtained using a procedure 

similar to the above, with a simple modification of the 

apparatus in Fig.1. 

 

Figure 2. Magnetisation Curve for a Ferromagnetic Material 

Now imagine calculat ing the magnetising curve using 

a current sweep generator and an oscilloscope or 

equivalent fast data logging equipment, which is more 

like the procedure used in MBN measurements. Imagine 

starting at point O with a demagnetised specimen and 

increase the current (and field) at a constant rate. If we 

consider applying one quarter of a complete cycle of a 

triangular current waveform of frequency f, the rate of 

primary current  increase is 4f Im where Im is the maximum 

primary current. The differential permeability is  

dd 1 d d

d d d d

p

p

IB t

H A t I H




  (3)  

Where A is the area of cross section of the specimen 

and Ip is the instantaneous primary  current. We have the 

following relations: 

d

d

s

s

V

t N


    (4) 

Where Vs is the electromotive force (emf) induced in 

the secondary coil and Ns is the number of turns; and 

d

d

p

p

I L

H N


   (5) 

It fo llows that the differential permeability can  be 

obtained by measuring the emf using the following 

relation 

m

d 1 1

d 4
s

p s

B L
V

H f I A N N

 
  
  

    (6) 

Alternatively, one can take the differential 

permeability as g iven and predict  the emf Vs  in  the 

secondary coil. In this case 

m 4 / d / ds p sV f I N N A L B H   
             (7) 

It can be seen from (3) that Vs increases linearly with 

the rate of excitation (f), all other factors being equal. 

 
Figure 3. Schematic Illustration of the Secondary emf and BH Curves 

Finally, the magnetisation BH curve is constructed by 

integration, as illustrated in Fig. 3. Estimates based on (7) 

show that the emf in the secondary coil is  relat ively large. 

For instance, if we take Ns=10
3
, Np=10

2
,f=0.1 Hz, 

A/L=2.25×10
-3

 m, Im=2 A, and dB/dH=10
-3

 NA
-1

, the 

value of Vs is predicted to be of the order of 200 mV. 

Clearly, this output is very much larger than any 

emission from Barkhausen noise, which is in the order of 

microvolts. The Barkhausen emission appears as a 

“noisy” signal (Fig. 4), which can be displayed in more 

detail by filtering and amplification. 

 
Figure 4. Schematic Illustration of Barkhausen Noise in a Vs- H Curve 

 

There is a significant difference between the signal and 

the noise illustrated in Fig. 4. Because of the high 

frequency of the noise and the skin effect, the noise is 

representative of events in the surface layers of the 

specimen. In contrast, the main signal is  of the same 

frequency as the energising current and so is represent-

ative of events in the bulk of the specimen.  
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A number of theories [2, 3] give the result that, to a 

good approximation, the magnitude of MBN is 

proportional to the differential permeability dB/dH, i.e. 

the noise in the signal is proportional to the magnitude of 

the signal (Fig. 4).  

II. BARKHAUSEN NOISE MODELLING 

Since models of MBN are often expressed in relation 

to the magnetisation M versus field H curve, rather than 

to the more familiar BH curve, the relat ion between these 

quantities is reviewed. The relation between flux density 

B and H is: 

0 rB H                            (8) 

where µ0 is the permeability of free space (= 4 10
7

 

TmA
1

) and the dimensionless parameter µr is the relative 

permeability of the material of the core of the solenoid. 

The relation between magnetisation and H is [1]: 

 

rM H H H      (9) 

where the quantity χ =µr–1 is the magnetic 

susceptibility of the material. The various forms of 

magnetis m (dia-, para- or ferro-) are defined in  terms of 

the characteristics of  for the material. It follows that 

B≈µ0 M for materials with high relative permeability. 

A simple phenomenological model of the emission of 

Barkhausen noise was presented by Jiles et al [4] and 

Jiles and Suominen  [5]. The model focuses on the 

connection between MBN and the magnetic hysteresis 

loop, but also brings in the stochastic aspects of the 

phenomenon. A basic assumption is that the rate of 

Barkhausen emission is proportional to the differential 

irreversible susceptibility i.e. 

d d d

d d d

JS irrM M H

t H t
                (10) 

Here, MJS is termed the “jump sum” and the suffix 

“irr” refers to irreversible magnetisation. It should be 

noted that MJS is very small compared with Mirr  so that 

the constant  has the role of connecting microscopic 

events with macroscopic behaviour. The proportionality 

constant  can be further subdivided into the number N  of 

Barkhausen events, which varies in a random manner, 

and the mean size of an event ‹Mdisc›, resulting in 

d d d

d d d

JS
disc irr

irr

M N H
M

t M t
   (11) 

The stochastic nature of Barkhausen emission enters 

the equation through N and the following iterat ive 

scheme for calculating N in the time interval t from its 

value in the preceding time interval has been proposed 

1 1t t rand tN N N     (12) 

where δrand  is a random number in the range 1.47. 

It is anticipated that the microstructure of the material 

will affect MBN in  two ways. First, the terms with a 

stochastic aspect ‹Mdisc› and N in (11) will be influenced 

by microstructure. The greater the number of 

impediments to domain wall motion, the greater the 

number of ind ividual Barkhausen events, but the smaller 

the amplitude of the event. Second, microstructure will 

also influence MBN through its effect on the differential 

susceptibility of the material in (11). 

It is anticipated that stress or strain will affect MBN 

only by affecting the differential susceptibility in (11). To  

understand the role of stress in MBN, the theory of the 

hysteresis loop has to be considered. 

B. Magnetoelastic Models of Hysteresis 

A model of the hysteresis loop, incorporating the 

influence of stress was developed by Sablik and Jiles [6]. 

A starting point is the defin ition of the relat ion between 

the anhysteretic magnetisation Ma and the applied field. 

Ma is the ideal magnetisation that would occur if domain  

wall movement were reversible i.e. if domain walls 

moved s moothly with no pinning and no sudden changes. 

The relation is given by: 

( / )a sM M H a L   (13) 

where L is the Langevin function L (x) = coth x – 1/ x, Ms 

is the magnetisation at saturation and a is a scaling 

constant for the material. The form of the relation is 

shown in Fig. 5. 

 
Figure 5. Anhysteretic Magnetisation as a Function of H 

There is no hysteresis because there is no jerky 

movement of the domain walls. However, the field  

experienced by domain walls is not the same as the 

external applied  field  H. Internally, the field is modified 

by the demagnetising effect of other domains and by the 

effect of magnetostriction. Thus, an effective field (Heff) 

must be used to calculate the effect on magnetisation. 
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This requires a correct ion to be made to the applied field, 

as shown in the following expression.  

3

2

0

effH H M
M

 





  


             (14) 

Here,  is the domain interaction constant,  is the 

magnetostriction and  is the applied stress. Various 

expressions for the magnetostriction have been used. One 

form gives: 

 
7

2
2 2 2

21 / 4

s

s s

M

M M M M M




  

              (15) 

 

where λs is a dimensionless constant containing the 

elastic constants for the material. It should be noted that 

the computation of the Ma versus H relation has to be 

made using numerical iterat ion because M (Ma) appears 

on both sides of equation (13) when Heff  is substituted for 

H. It fo llows from (13) and (14) that stress influences the 

anhysteretic magnetisation curve through the magnet-

ostriction. Although this curve is not the one required for 

prediction of MBN and indication of how it is affected by 

stress is given below. 

Equation (11) shows that stress affects MBN through 

the𝜒𝑖𝑟𝑟
′ = dMirr / dH term. If we assume that dMa/ dH 

shows a parallel dependence on stress, a simple 

calculation can be made after noting that the maximum 

value of dMa/ dH occurs when Ma= H = 0. Differentiat ion 

of (6) and using (14) and (15), gives the following 

relation 

1

21

22

max 0

d 3

d

a s

s s

M a

H M M








  
    

   
              (16) 

Taking typical values for steel, Ms = 1.6  10
6
 A m

1
, 

a= 4500 A  m
1

,  = 6.9  10
5

 and s  = 6.2  10
6

, the 

relationship in  (16) is p lotted in Fig. 6. It can be seen that 

the curve in Fig. 6 gives a qualitatively  similar relat ion to 

that observed for MBN intensity versus stress in hard 

materials [6]. 

C. Irreversible Magnetisation 

As indicated above, the magnetoelastic aspect of MBN 

emission must be computed using the irreversible 

magnetisation. This is a relatively difficult computation 

because of hysteresis, the uncertainty of the values of the 

large number o f parameters involved, and potential 

instabilities in the solutions, as discussed below. 

Sablik and Jiles [7] derived the following differential 

equation for Mirr: 

   2 2

0 0

d

d / 3 / 2 /

irr a irr

a irr

M M M

H k M M M     




      

        (17) 

The equation has to be integrated numerically to obtain 

the relation between Mirr  and H. Only then can the crit ical 

quantity dMirr / dH be evaluated. In (17), k  is the pinning 

constant that indicates the strength of interaction between 

defects and domain walls and  takes the value 1 

depending on whether H is increasing or decreasing. 

Numerical integration is carried out in three stages. First, 

the initial condition Mirr = H = 0 is assumed and the 

equation is integrated between H = 0 and the maximum 

value Hmax. This gives the initial condition for the second 

stage of integrating between Hmax and Hmax. Using the 

final values obtained in the second stage, the third stage is 

to integrate between Hmax and Hmax. In the orig inal 

formulat ion [7], k was taken to be constant for a given 

material, but in a recent extension of the model [8], the 

pinning constant was deduced to be linearly  dependent on 

stress. 

 
Figure 6. Effect of Stress on the Maximum Anhysteretic Slope. 

Note That the Graph is Scaled so the Slope with Zero Stress is Unity. 

It should be remarked that the calculations are not 

simple to implement. Because of instability in  the 

solution, the range of stress that can be handled is 

relatively s mall and depends on the other parameters. In  

addition, for general use, the values of the many 

parameters that enter into (17) are not known with 

precision for a range of microstructures. However, for the 

purpose of demonstration, an example is g iven below. An 

Mirr vs. H loop was constructed by integrating (17) in  

three stages, as described. The effect  of stress on the 

hysteresis loop is shown in Fig. 7. 

As anticipated, an applied tensile stress has the effect 

of making the hysteresis loop narrower and increasing the 

maximum slope. Having obtained the Mirr vs. H curve, 

the differential susceptibility was calculated directly from 

(17). The result is shown in Fig. 8. As might be deduced 
by inspection of Fig. 8,  𝜒𝑖𝑟𝑟  

′ as a function of H shows a 

single peak at  a position H> 0 (increasing field). This is 

qualitatively similar to the MBN profile in many cases. 
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Figure 7. Effect of Applied Stress on Mirr vs. H curve, Constructed by 

Integrating eqn. (17) using: a = 4500 A/m;  = 6.9  10
5

; k/0 = 810
3 

 
Figure 8. Differential Susceptibility 𝜒𝑖𝑟𝑟

′  Calculated from Equation (17) 
using the Mirrvs. H Data in Fig. 7 (increasing Field Only) 

Lo et al. [8] used (17) to compute the effect  of stress 

on the hysteresis loop for ferrit ic stainless steel and hence 

to compute the relation between stress and root mean 

square MBN. The variat ion of the experimental hysteresis 

loop parameters and stress was used to obtain values for k 

as a function of stress. Good agreement between the 

model and experimental MBN results was obtained. 

III. CONCLUSION 

1- There is a close connection between magnetic 

Barkhausen noise and the magnetic hysteresis of 

ferromagnetic materials. 

2- The effect of stress on magnetic hysteresis can be 

evaluated using the irreversib le magnetisation 

model. 

 

 

 

 

 

 

 

 

 

3- It is proposed to combine the hysteresis and the BN 

techniques in practice, in order to obtain more 

detailed magnetic informat ion about the investigated 

materials. 

4- It should be stated that the model is not easily  

adapted to general use because of the considerations 

given above. For this reason, we attempt to draw 

only qualitative conclusions from it. 
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