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Abstract—This paper presents explicit formulations to 

calculate the mass and stiffness matrices used in the finite 

element method for vibration analysis in rod, beam, and 

shaft tapered elements. The cross-sections of these elements 

are considered to vary linearly. The analyses of two types of 

cross-sections are carried out; the circular cross-section and 

the rectangular cross-section. The shape functions are 

formulated for each type of elements. The presented 

formulations are straightforward to use in a piecewise form. 

As an acceptable alternative, the obtained expressions are 

benchmarked by replacing the tapered member with a 

sufficient number of rigidly connected uniform elements. 

The comparison is made between the obtained modal 

parameters, mainly the natural frequencies of the analyzed 

element. The obtained results are accurate and confirm the 

reliability of the presented formulations. 

 

Index Terms:Tapered finite element, FEA, 3D truss elements, 

vibration analysis. 

I. INTRODUCTION 

apered elements are needed in many structures, 

where the distribution of loads and weights is 

required to respect a certain pattern. The tapered elements 

have a desirable structural efficiency, which is mainly the 

high stiffness-to-mass ratio. They have the advantage of 

providing better shear-carrying capacity and high lateral 

stability when compared to uniform elements, besides 

weight saving. There are a variety of tapered elements 

regarding their cross-section variations. Tapered elements 

can have circular, rectangular, or even I-shaped, H-

shaped cross-sections. The cross-section variations for all 

these types, depending on their type, could be simplified 

by considering a linear or polynomial variation of the 

cross-section along the element axis. A simple technique, 

if, say, a beam element is used, to analyze the tapered 

element is to divide it into several uniform straight beam 

elements [1]. This methodology is not as accurate as 

using a specific tapered element instead. Some previous 

work was done utilizing the Bessel function type of 

solution for the tapered element [2]. The governing 

equation for tapered elements can be solved analytically 

[3,4], but a matrix representation is needed when dealing 

with complex structures. Langley [ ] conducted an 

extensive investigation on wave propagation in non-

homogeneous waveguides, where longitudinal and 

flexural motions are considered. An approximate method, 

proposed by Bazeos [ ], is based on using a series of 

dimensionless design-oriented charts relating the critical 

load of linearly tapered columns.  

Nevertheless, few approaches separately address the 

use of direct expressions for the analysis of the members 

that constitute a 3D truss structure, which involves axial, 

flexural, and torsional vibrations. Cem Ece et al. [ ] have 

investigated the vibration of a beam with a variable cross 

section, where the change in area was formulated using a 

non-uniformity parameter given as an exponential 

function. Different boundary conditions were analyzed. 

No expressions were given for the mass and stiffness 

matrices, but instead the natural frequencies and mode 

shapes were calculated. The linearly tapered Timoshenko 

beam was studied by Huong and Gan [ ], where its shape 

functions were developed. The shape functions were 

verified by performing a static analysis of a tapered 

element. Mohri et al. [ ] investigated the case of large 

torsion of a thin-walled tapered beam element, and 

studied the buckling in these types of structures. 

Kalkowski et al.    ] analyzed longitudinal wave 

propagation in a varying cross section rod, exponentially 

tapered. It concentrated on cut-off frequency at which the 

longitudinal waves start to propagate in the rod. The work 

was supported experimentally. Later in 2019, Banerjee 

and Ananthapuvirajah [1 ] investigated an analytical 

procedure to compute the natural frequencies and mode 

shapes of tapered beams, with solutions based on the 

Bessel function. However, no closed-form expressions 

were presented for the mass and stiffness matrices. 

Chockalingam et al. [1 ] studied tapered I-beams 

focusing on shear stress distribution, presented 

analytical solutions and validated with the finite element 

method. Lateral buckling analysis was conducted on 

sandwich fiber-metal laminate tapered I-beams [1 ]. 

T 
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The structure was subjected to transverse loading, with 

results verification using ANSYS package. 
In this paper, an attempt is provided to obtain closed 

expressions for mass and stiffness matrices, put in 

simpler manner, for tapered elements analysis. Two 

special types of tapered cross-sections, circular and 

rectangular types, are formulated. These solutions are 

provided for beam, rod, and shaft finite elements, 

considering a linear variation of their cross-sections. 

These types of waveguides are selected because together 

they facilitate the study of vibrations of 3D truss-type 

structures that might have tapered elements.  

II. LINEARLY  TAPERED  ELEMENTS: 

CIRCULAR CROSS-SECTIONS 

   The equations describing how the element cross-section 

varies along its axis are described as follows. Beginning 

with the linear change of radius, the following equation 

can be adopted, 

  ( )    (  
   

 
)      

   where   x  is the radius for radius linear variation with 

beam axis,    is the radius at x=0,    is the radius at x=L, 

L is the length of the element, and    is a constant found 

by applying the boundary conditions defined as  (      
 )    , and  (      )    . Thus, the radius variation 

function becomes, 

  ( )  
(   )        

 
. ( ) 

   Therefore, the functions that describe the change of the 

circular cross-section area   x    ( ) , the moment of 

inertia   x    ( )  ⁄ , and the polar moment of inertia 

  x    ( )  ⁄  can be finally written as follows, 

respectively, 

  ( )  
 ((   )        )

 

  ,     

  ( )  
 ((   )        )

 

         

   ( )  
 ((   )        )

 

   .     

   These expressions are then used to obtain the shape 

functions, and consequently the stiffness and mass 

matrices for the element in question. In the following 

sections, note that the nodal cross sectional areas are    

at x=0 and    at x=L, the nodal moments of inertia are    

at x=0 and    at x=L, and the nodal polar moments of 

inertia are    at x=0 and    at x=L. 

A. Beam Tapered Element with Circular Cross-section 

    Stiffness and mass matrices for a single tapered beam 

element are formulated. The beam theory considered here 

is Bernoulli Euler’s, see Figure   . Note that    and    

are the nodal displacement and rotation at node 1, 

respectively, and    and    are the nodal displacement 

and rotation at node 2 of the beam element. 

 

Figure  . Tapered beam with linear cross-section profile. 

   In general, for a straight beam, the stiffness and mass 

matrices can be derived by integrating the governing 

differential equations of the beam [  ,   ]. From the first 

governing equation, we have 

  ( ) ( )
   ( )

     ,     

   which has a general solution for the transverse 

displacement in the form 

  ( )            
     

 .     

   Using the end conditions at x=0 and at x=L, with L as 

the beam length, and defining the four nodal degrees of 

freedom for nodal displacements and rotations, 

respectively,            , we end up with the relation, 

  ( )                     ,     

   where   ( ) are defined as the interpolation functions. 

In the same fashion, the slope, moment M (x) and shear 

force V(x) are obtained using the governing equation, 

with E being Young’s modulus, 

  ( )   ( ) ( )
   ( )

     ( ) ( )[  
  ( )   

  
  ( )     

  ( )     
  ( )  ].     

   For the beam in Fig. 1, with shear forces V =-V(0) and 

V =+V(L), bending moments M =-M(0) and M =+M(L), 

the nodal forces and moments can therefore be related to 

the nodal translations and rotations and put in matrix 

form. 

   Following this procedure for a linearly tapered beam 

element, where the variables  ( ) &  ( ) are functions 

of x, and   &   are not, the obtained interpolation 

functions are, 

  ( )  

{
  
 

  
 

   

    
  

    

  

    
  

 
  

 
   

    
  

  

  

   
  

 }
  
 

  
 

 

.      

   Therefore, and by definition [  ], the [4x4] stiffness 

and mass matrices can be obtained by, respectively, 

   
   ∫  ( )

 

 
 ( )    ( )   ( )  ,      

   
   ∫  ( )

 

 
 ( )  ( ) ( )  .      

   Solving these integrals, the elements of the two 

matrices for the linearly tapered beam element are 

obtained and given in Appendix A. Both matrices are 

symmetric. 

v2 , f2

V2 , M2

v1 , f1

V1 , M1

A0 , I0

AL , IL
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B. Rod Tapered Element with Circular Cross-section 

    Stiffness and mass matrices for a single tapered rod 

element are formulated. The same variables are defined 

for the areas at the tips  ( ). In general, for a straight 

bar, the stiffness and mass matrices are derived by 

integrating the governing differential equations for axial 

deformation. Using a linear equation for the solution of 

displacements, we end up with linear shape functions: 

      ⁄   ,      ⁄ . Defining the axial forces at 

the two nodes, and their corresponding displacements, the 

stiffness and mass matrices can easily be found, in a 

similar fashion used for beam elements, as following, 

   
   ∫  ( )

 

 
 ( )   ( )  ( )  ,      

   
   ∫  ( )

 

 
 ( )  ( ) ( )  .      

    Solving these integrals, the elements of the two 

matrices for the linearly tapered beam element are 

obtained and given in Appendix A. Both matrices are 

symmetric. 

C. Shaft Tapered Element with Circular Cross-section 

   For the shaft tapered element with a circular cross-

section, the formulation is obtained following the same 

procedure as is done for the rod element. The difference 

here is that the DOFs are torsional displacements and 

torque forces, obeying the shape function of the rod 

element. The stiffness and mass matrices are obtained by 

replacing  ( ) ( ) and  ( ) ( ) for rod element, with 

 ( ) ( ) and  ( ) ( ) respectively. These matrices, i.e., 

  
   and   

   are given in Appendix A.  

III. LINEARLY  TAPRED ELEMENTS: 

RECTANGULAR CROSS-SECTIONS 

   In this case, the element cross-section has a rectangular 

shape, having a fixed height and a varying width, or vice 

versa. The equation describing the variation of the cross-

section area is thus linear, given by, 

  ( )  
(   )      

 
.      

   For the moment of inertia, and as the width of the 

element changes linearly, a linear function described 

before for the linear change of radius in circular elements 

is again adopted. The polar moment of inertia would have 

a similar equation. 

  ( )  
(   )        

 
       

  ( )  
(   )        

 
.      

A. Beam, Rod, and Shaft Tapered Elements with 

Rectangular Cross-section 

    Beam element: the shape functions are still the same 

for the beam element given above. The stiffness and mass 

matrices for this type of cross-section are symmetric. 

They are obtained using equations (11) and (12), together 

with equations (15) and (16). The terms of matrices   
   

and   
    are shown in Appendix B.  

     Rod element: adopting the same shape functions for 

the rod element above, and using equation (15) in 

equations (13) and (14), we end up with the stiffness and 

mass matrices    
   and   

  , respectively, as shown in 

Appendix B.  

    Shaft element: using similar expressions used for the 

rod element, but replacing  ( ) ( ) and  ( ) ( ) with 

 ( ) ( ) and  ( ) ( ) respectively, and solving the 

integrals, we obtain the matrices   
   and   

   as given in 

Appendix B. 

IV. NUMERICAL EXPERIMENT  OF THE 

OBTAINED   FORMULAS 

    All obtained matrices are verified in what follows. 

Straight tapered models of a beam, rod, and shaft 

elements are used. All three models have stainless steel 

elements of E=200GPa,            ,      , and a 

total length of 1m. All models represent a cantilever 

member, fixed at the smaller cross-section area  (  
 ), see Figure   . An impulse load of unitary value is 

applied at the free tip, being a transversal excitation in the 

case of a beam, axial for a rod, and torque for a shaft 

element. The mesh size is 0.01m, thus comprising 100 

elements and 101 nodes. This mesh is sufficient for 

convergence of the conducted modal analysis. 

 

Figure  . Tapered model used in the numerical experiment. 

   A matrix of cross-section areas, moments of inertia, and 

polar moments of inertia have to be constructed and used 

as input parameters. Each matrix has the values of radii 

   and   ,    and   ,    and   , and    and   , defined for 

each finite element of the used mesh. A computer 

program is built in MATLAB
®
 environment for that 

purpose and for building the FEM model and solving the 

system of matrices. The Frequency Response Function 

(FRF) is then calculated at the excitation DOF. Different 

frequency ranges are used, depending on the type of 

waveguide, i.e., beam, rod, or shaft. The aim is to 

compare the first few natural frequencies of each 

waveguide. 

   The radii for the circular cross-section model used are: 

        and        . For the rectangular cross-

section, a member’s height of        is used, and 

smaller width of        , and bigger width of 

        are used in the analysis. 

A. Idealization Using Uniform Elements 

   As an acceptable alternative, the obtained expressions 

are benchmarked by replacing the tapered member with a 

stepped element consisting of a sufficient number of 

rigidly connected uniform elements, as shown in Figure. 

3. The same element size used in the tapered element 

model is adopted. 

 ....

A0 , I0

AL , IL

y

A(x) , I(x)
x

Fy
(for beam model)

Fx
(for rod model)

Rx
(for shaft model)
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Figure  . Idealization of tapered elements with uniform elements. 

B. Comparisons of Obtained Natural Frequencies 

    The calculated natural frequencies are derived from the 

obtained FRFs and are shown in the following, 

benchmarked with the uniform model of each waveguide. 

These are demonstrated for the circular and rectangular 

cross-section types, as demonstrated in Table   and Table 

 .  
Table 1.  (A) First Few Natural Frequencies in Hz: Circular Cross-

sections (Beam & Rod Elements). 

Mode 

No. 

Beam Element Rod Element 

Uniform 
Tapered 

(difference %) 
Uniform 

Tapered 

(difference %) 

       
     

        
      

      

        

        
       

        
        

       

        

        
       

        
       

        

        

        
       

        
        

        

      %) 

         
        

        
        

         

      %) 

         
        
        

        
         
      %) 

Table  . (B) First Few Natural Frequencies in Hz: Circular Cross-

sections (Shaft Element). 

Mode 

No. 

Shaft Element 

Uniform 
Tapered 

(difference %) 

  
             

        

  
              

        

  
              

        

  
            

        

  
              

        

  
              

      %) 

Table  . (a) First Few Natural Frequencies in Hz: Rectangular Cross-

sections (Beam & Rod Elements). 

Mode 

No. 

Beam Element Rod Element 

Uniform 
Tapered 

(difference %) 
Uniform 

Tapered 

(difference %) 

       
     

        
       

       

        

        
      

        
       

       

        

        
      

        
       

       

        

        
      

        
       

       

      %) 

         
      

        
        

        

      %) 

         
      

        
        

        

      %) 

 

 

Table 2. (B) (a) First Few Natural Frequencies in Hz: Rectangular 

Cross-sections (Shaft Element). 

Mode 

No. 

Shaft Element 

Uniform 
Tapered 

(difference %) 

        
      

         

         
       

        

         
       
        

       
       

        

         
       
        

         
       

        

  

    From the tables, all the natural frequencies calculated 

via  

tapered elements using the proposed formulation compare 

very well with the approximated model with a large 

number of uniform members, with very low differences. 

V. CONCLUDING REMARKS 

    Direct formulas have been presented to calculate the 

mass and stiffness matrices for tapered finite elements. 

Formulations are carried out for beam, bar, and shaft 

elements. These formulations are based on the estimation 

of a function for the variation of the cross-sectional area, 

the moment of inertia, and the polar moment of inertia, 

for the analyzed elements. The main advantage of these 

formulas is their direct and simple utilization for the 

analysis of 3D types of truss structures that include 

tapered type of members. Benchmarking proved the 

effectiveness of the presented formulas and confirmed 

their reliability. A more complex expressions for arbitrary 

tapered cross sections can still be formulated but would 

probably result into longer and more complex 

mathematical formulations for the mass and stiffness 

matrices, which was not the idea in the present paper.  
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APPENDIX 

Appendix A: tapered elements with circular cross-section 

The stiffness and mass matrices are symmetric, and their elements are 
as follows. 

A1: Linearly tapered beam element: 
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A : Linearly tapered rod element: 
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A : Linearly tapered shaft element: 
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Appendix B: tapered elements with rectangular cross-section 

The stiffness and mass matrices are symmetric, and their elements are 

as follows. 

B1: Linearly tapered beam element: 
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B2: Linearly tapered rod element: 
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B3: Linearly tapered shaft element: 
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