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Abstract— in this paper, a brief introduction to the 

disturbance rejection methods is given in general and to the 

periodic disturbance rejection methods in particular.  

Therefore in the following, methods of using only feedback 

technique to achieve both set point tracking and periodic 

disturbance rejection are presented.  Also, the interaction 

problem between the set point design demands and the 

periodic disturbance rejection is discussed.  Then, the 

interaction is minimized by using a separate feed-forward 

controller to reject the periodic disturbances as an add-on 

compensator to the pre-existing set point tracking feedback 

controller.  Furthermore, the idea of the disturbance 

observer is introduced in general as well as the adaptive 

periodic disturbance cancelation method. 

  

Index Terms: periodic disturbance, feedback rejection, feed-

forward compensation, periodic disturbance observers.  

 

I. INTRODUCTION 

ndesirable oscillations are in particular assumed to 

be periodic disturbances, which could be generated 

by external sources, called forced oscillations, or 

internally by linear system dynamics.  If one or more of 

the system modes are excited, this could lead to a 

constant oscillation (pure sinusoidal oscillation when a 

system has a pair of complex conjugate imaginary poles 

or more at the imaginary-axis in the s-plane), or a 

transient oscillation when the system has a positive or a 

negative damping coefficient. 

Moreover, sustained oscillations could also take place 

because of nonlinear system dynamics [1].  For example, 

limit cycle oscillations induced from hysteresis elements, 

or oscillations generated because of state dependent 

parameters like in rotational drive-load (source-drain) 

systems, which could cause the rotor angular position or 

velocity to oscillate, and this is mainly because of angle 

dependent (periodic) drive or load parameters.  Moreover, 

these types of oscillations can also be called or classified 

as self-excited oscillations. 

In practice, such oscillations could actually be 

induced in the angular velocity servo control drive-load 

systems either from the drive side and/or from the load 

side.  The drive side systems are, for example, recip–

rocating engines, where according to their construction 

and working principles, they generate angle dependent 

pulses of torque that cause oscillation in the rotational 

velocity.  Therefore, a lot of work has been done in order 

to reduce these oscillations, for example, Zaremba, 

Burkov and Stuntz have developed a control algorithm to 

reduce the oscillations of the engine idle speed [2], 

Gusev, Johnson and Miller have developed an active 

flywheel algorithm to reduce the engine speed oscillation 

[3] and Njeh, Cauet and Coirault have developed a new 

control strategy to reduce the torque ripples of the 

combustion engine in hybrid electric vehicles [4].  More-

over, electrical drives also have torque ripples that need 

to be reduced, for example, in induction motor [5, 6], as 

well as the cogging torque in permanent magnet 

synchronous-motors [7-13], etc. 

On the other hand, the angle dependent load machines 

can also be the main source of oscillations in drive-load 

systems.  For example, load machines with reciprocating 

motion like crankshaft or camshaft machines are recipro-

cating air compressor machines, rectilinear or 

reciprocating saw machines, weaving machines [14], etc.; 

also machines with undesirable eccentricity like disc 

drive systems [15, 16]; or in noncircular roll machines 

[17-19].  Therefore, it is very important for the 

performance of the drive-load system to prevent (reject) 

the oscillation generated at the drive side to go to the load 

side, or the oscillation generated at some load to affect 

the other coupled loads, especially, when drive-load 

system has more than one load linked together. 

In the next, feedback disturbance rejection is briefly 

discussed, and then in section III, the periodic disturbance 

rejection filter is introduced.  In section IV, the feed-

forward disturbance compensation is introduced in 

general, then, in sections V and VI, by using disturbance 

observers, as well as the adaptive periodic disturbance 

cancellation in VII.  Finally, some comments and conclu-

sions are given in section VIII. 
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II. FEEDBACK  DISTURBANCE 

REJECTION 

Set point tracking and disturbance rejection are the 

main objectives of the classical and the modern control 

system engineering, where both feedback as well as feed-

forward can be used to achieve the design objectives of 

the set point tracking and the disturbance rejection.  But, 

using feedback control only to achieve these objectives 

could lead in some circumstances to an interaction 

between the design demands, for example, the multi-

objective design problem described in [20], subsection 

2.3.3, which results in a compromising solution between 

the set point tracking demands and disturbance rejection.  

Therefore, the problem must be separated or separate 

solutions should be found to solve this controversy.  

However, in this section, the disturbance is tried to be 

rejected by using only the feedback control with set point 

tracking as a primary goal to achieve.  Now, the feedback 

control system structure, pictured in the following Fig. 1, 

is assumed.  The disturbed process is put under feedback 

control. 

 

For the system shown in Fig. ‎1, the closed loop 

frequency response of the set point and the disturbance 

are given below respectively 

    

    
 

          

            
  (1) 

    

     
 

     

            
  (2) 

From the equations (‎1) and (2), it can be seen that the 

condition for good set point tracking, which is a primary 

design objective here, as 

              (3) 

to be valid in the desired system bandwidth, which yields 

    

    
                    

    

     
 

 

     
  (4) 

But for a perfect disturbance rejection, especially outside 

the systems desired bandwidth, anther more condition is 

needed, which is 

         (5) 

so that the disturbance response becomes 

    

     
    (6) 

 

However, for dynamic systems, these conditions can 

only be hold for specific frequency spectrum 

(bandwidth), so that from the disturbance rejection 

perspective, if the disturbance frequency still lies outside 

the bandwidth then it will get a poor rejection. 

III. PERIODIC DISTURBANCE 

REJECTION FILTER 

So far, the best condition for a perfect disturbance 

rejection is checked in the frequency domain.  The 

second condition (of course after the validation of the 

first one) actually reveals how to be done.  For example, 

if the disturbance is just a constant in the time domain, 

which is represented in the frequency domain by a 

component at frequency zero.  This means that, an 

integral action (pole at frequency zero) must be added to 

the controller in order to guarantee the second condition 

to reject the effect of this disturbance on the system 

output.  Therefore, for a periodic disturbance, complex 

conjugate poles at the disturbance frequency are needed 

to be added to the controller in order to keep the second 

condition valid for perfect disturbance rejection, which 

actually makes a notch in the closed loop frequency 

response at the disturbance frequency.  This Periodic 

Disturbance Rejection Filter (PDRF), also ―inverse‖ 

notch filter, is according to the internal model principle 

[21, 22].  However, most of the use of the notch filters in 

control applications is to shape the system frequency 

response of the feedback loop.  They are usually 

implemented in a feedback control systems to suppress 

the resonance modes of flexible structure characteristics, 

which are actually the causes of the oscillations (see, for 

example, [23, 24]). 

But now, a PDRF is considered to reject the periodic 

disturbance that come from an external source.  The 

PDRF can simply be defined, for instance, by an under 

damped second order transfer function as 

      
    

 

            
     (7) 

This part is simply added to the original feedback 

controller as shown in Fig. 2.  For example, if the 

controller originally has the proportional, integral and the 

derivative actions then this part is assumed to be as an 

extension to the integral part to counteract the corres-

ponding periodic disturbance.  Fig. 3 shows the poles of 

the PDRF when disturbance frequency is at   [rad/s] and 

its damping ratio    is equal to zero.  Furthermore, Fig. 2 

shows two variations of adding the PDRF to a preexisting 

feedback controller.  The resulted closed loop transfer 

function will be for the variant A as 
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(8) 
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Controller Process 

Figure. 1: FeedBack Control of Disturbed Process. 
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and for the variant B as 

       
          

  [           ]     
     

                
     

  [           ]     
       

(9) 

Obviously, there is no difference between the variants 

A and B in the disturbance rejection curves.  But there is 

a difference between the set point response curves.  

Variant A tries to give a large open loop gain (or even 

infinite for perfect disturbance rejection) at the 

disturbance frequency which leads to that the controller 

amplifies this frequency in the frequency response of the 

set point.  This means, it gives very high open loop gain 

at this frequency for the set point.  Therefore, this variant 

will be the choice to reject a periodic disturbance when 

its frequency is inside the system bandwidth. 

  Alternatively, variant B suppresses both the set point 

and the periodic disturbance by creating a notch in the 

closed loop set point and the disturbance frequency 

responses at the periodic disturbance frequency.  This is 

needed when the disturbance frequency is outside the 

(demanded) system bandwidth.  Fig. 4 and Fig. 6 show 

the closed loop frequency and time responses for the set 

point and the disturbance, when the disturbance 

frequency is inside the system bandwidth, while Fig. 5 

and Fig. 7 show the closed loop frequency and time 

response, when the disturbance frequency is outside the 

system bandwidth.  

Generally, for multi-harmonic disturbances, a number 

of PDRF can be designed and used to reject every single 

harmonic distinctively or one PDRF for a band of 

disturbance frequencies.  For the case of infinite 

harmonics a repetitive controller [25-27] can be used to 

reject them. 

In conclusion, the perfect condition for disturbance 

rejection will add some extra lag to the open loop path.  

Regrettably, this will deteriorate the closed loop set point 

tracking characteristics in terms of dynamics and 

stability.  It will be even worse if there are multi-

harmonics.  This will make the design more complex.  

And at the end, there will be only a compromising 

solution between system (relative) stability and 

disturbance rejection design demands. 

The design of the PDRF, added to a closed loop 

negative feedback controller, can actually be carried out 

by all classical as well as modern control design 

techniques.  For example, if the PDRF is added to a PID 

controller, then the design could simply be done by 

tuning the PID as well as the PDRF parameters to get the 

desired set point tracking and periodic disturbance 

rejection demands.  But this is not going to be an easy 

task for complex systems.   

Alternatively, the design can be done using classical 

control design techniques, e.g. in frequency domain to get 

the corresponding phase and gain margins for a specific 

relative stability, or by using the pole placement 

technique, to get the desired stable closed loop poles.  

Moreover, the design can also be carried out by using 

modern control design techniques, e.g. using state 

feedback pole placement or optimal control, and 

furthermore alternatives are the design methods based on 

the robust control theory to achieve a robust controller. 

Also, Iterative Learning Control (ILC) can be used to 

reject periodic disturbances, although it is originally 

designed to optimize the repeated (set-point trajectory) 

task tracking of robots. However, the ILC can be used to 

iteratively learn (estimate or adapt) a proper (feed-

forward) control signal to reject a periodic disturbance 

given in the repeated task period, which is at the end acts 

as repetitive control algorithm, for example, see [2, 28].  

Moreover, the ILC control learns (estimates or adapts) 

the control signal from the past iteration to optimize a 

repetitive task, rather than estimating the controller 

parameters as in the case of adaptive control, for more 

general information about ILC refer, for example, to [29, 

30]. 
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Figure. 2: Addition of PDRF in Two Variations A and B. 
 

Figure. 3: The PDRF  Poles in  -Plane for 𝜔𝑑  𝛾 and   𝜉𝑑   . 
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IV. FEED-FORWARD DISTURBANCE 

COMPENSATION 

To achieve feed-forward compensation, both the 

disturbance signal and the model characteristics of the 

system should be known, this can be explained by the 

following.  A system, as shown in Fig. 8.A, is assumed, 

which is described by functional (operator) 

                   (10) 

where y(t) is the output, u(t) is the (manipulated) input 

and d(t) is the disturbance input of the system.  

Furthermore, the disturbance is assumed to be measurable 

and its effect on the system output is needed to be 

cancelled by using the manipulated input.  A further 

assumption is to be made that the input signal and the 

disturbance signal have an independent action on the 

system output.  This means, that the output functional is 

separable, see Fig. ‎8.B1, and can be separated into 

independent functionals as 

                        (11) 

Now, if the disturbance action is to be compensated 

by the input signal, this makes its effect on the output 

equal to zero, see Fig. 8.B2.  From this, the input 
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Figure. 4: Disturbance Frequency Inside the (Demanded) 
System Bandwidth. 

 

Figure. 5: Disturbance Frequency Outside (Demanded) System 
BandWidth. 
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Figure. 7: Disturbance Frequency Outside (Demanded) System 
BandWidth. 
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compensation signal (feed-forward control law) can be 

calculated by  

        
              (12) 

where   
         is the inverse of the input functional.  

Now, if the disturbance action on the output is to be 

compensated by the input, then the disturbance signal 

must be available either by direct measurement, 

observation (if it is not directly measured), estimation 

(measurements are stochastic) or prediction (if the needed 

value is in future, especially for systems with large time 

delay).  In addition, the system input functional, its 

inverse and the disturbance functional should be also 

available (known).  Furthermore, if the input and the 

disturbance functionals can be represented by linear 

transfer functions, as shown in Fig. ‎8.C1, then 

                          (13)  

So again, the condition for disturbance compensation 

by the input, as shown in Fig. ‎8.B2, is given by 

      
     

     
      (14)  

Apart from the lately discussed conditions, the input 

transfer function has to have  minimum phase (stable) 

zeros and the ratio of the disturbance transfer function 

divided by the input transfer function should be causal 

(denominator degree is higher than the degree of the 

numerator).  Otherwise, the feed-forward control law is 

unrealizable.  Notwithstanding this, an exception can 

though be made, if the disturbance is a periodic signal, 

and the feed-forward law is non-causal.  Therefore, it will 

be a matter of finding the right amplitude and phase shift 

to compensate (cancel out) the respective periodic signal.  

This will be more discussed in section VII. 

Fig. ‎8.D1 shows the output disturbance format and 

Fig. ‎8.E1 shows the input disturbance format.  The 

transformation of the output disturbance into input 

disturbance is given by 

      
 

     
        (15) 

where    is the output disturbance (               ), 

while the transformation of the input disturbance to 

output disturbance is given by 

                    (16) 

It is clear from the transformation equations that the 

input to output disturbance transformation is causal, but 

the output to input disturbance is not, since the reciprocal 

of causal dynamics yields a non-causal system.   For real 

application, an exception can be made only for periodic 

disturbances, since the periodic signals are completely 

predictable in future when their amplitude, phase shift 

and frequency are constants. 

 

Now, assuming that the structures given in Fig. 8.A, 

B1, C1 and D1 can be transformed into the form of the 

direct input disturbance, see Fig. ‎8.E1, by having this 

signal as a direct measurement, observation, estimation or 

prediction, then it can be used directly without extra 

computation, or simply the feed-forward control law 

becomes as 

              (17) 

So at the end, it is better to get the input disturbance 

signal even when the real system has another disturbance 

signal, e.g. output disturbance signal, so that to get the 

simplest feed-forward control law, as shown in Fig. 8.E2. 

Regrettably, in practice, most of the cases are either 

the direct measurement, by using extra sensor(s), is 

impossible, or it is commercially too expensive to realize.  

Therefore, indirect methods are used, for example, using 

a disturbance observer (estimator, predictor) to construct 

the disturbance signal by monitoring the system input and 

the disturbance effect on the output.  However, the 

implementation of this type of disturbance observer to 

estimate the disturbance and at the same time to cancel its 

effect on the output, transforms the principle idea of feed-

forward control back into feedback control, but one 

exception could be made when the process model is 

perfect.  Therefore, this type of feed-forward control is 
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Figure. 8: Disturbances and their Feed-Forward Control. 
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sometimes alternatively called estimated feedback 

control, pseudo or virtual feed-forward control [20]. 

V. INTRODUCTION TO 

DISTURBANCE OBSERVERS 

In this section, some simple disturbance observers are 

briefly introduced and discussed, first using transfer 

function filter formats and then later in state space. 

A. Transfer Function Based Disturbance Observer 

The problem here is to compute the output 

disturbance of a process from its input and output 

measurements, where the output measurements are also 

assumed to be corrupted with a measurement error 

(noise), as shown in Fig. 9. 

                         

                             
(18) 

Now, if the disturbance estimate is needed and the 

process dynamics can be represented or approximated by 

some mathematical model, so that the response of the 

process dynamics to the input can be estimated by 

 ̂      ̂          (19) 

Consequently, the output disturbance can be 

computed (estimated) by 

 ̂            ̂      (20) 

Since the process dynamics cannot in reality be 

structured in a model without any error, or in other 

words, there is actually an error, because of a model 

structure that cannot take in consideration all modes or 

nonlinear characteristics of the process.  Therefore, this 

modeling error is defined as a disturbance added to the 

estimated output of the process dynamics 

       ̂             (21) 

So, the disturbance computation will be 

 ̂                           

                               
(22) 

which gives 

 ̂                         (23) 

Thus at the end, the computation of the disturbance is 

corrupted with the measurement and the modeling error 

of the system.  Moreover, the last disturbance observer 

computes the estimate of the output disturbance, which is 

not directly applicable if its effect on the output is wanted 

to be compensated.  Since it must be first converted to an 

input disturbance and that needs the inverse of the 

estimated process dynamics, as in equation (‎24) and Fig. 

9 show. 

 ̂     ( ̂    )
  

 ̂      (24) 

 

provided that the (estimated) process has no non-

minimum phase (unstable) zeros and its inverse is a 

causal system.  This way of computing the input 

disturbance is indirect and susceptible to a lot of 

computation errors, since the estimated process dynamics 

and their inverse are needed in the computation.  For a 

better performance, an input disturbance observer is 

introduced that uses only the estimate of the process 

dynamics, plus a feedback correction is applied by 

amplifying the observer error between the real 

(measured) and the estimated output as shown in the 

Fig. ‎10.  So, the estimated input disturbance is given as 

 ̂      
          

        ̂    
       (25) 

For the case that       ̂      , the estimated 

disturbance becomes 

 ̂      
     

 ̂    
       (26) 

and here, the input disturbance is estimated without the 

need to compute the inverse of the estimated dynamics 

with the condition that  ̂          .  The estimated 

input disturbance will be exactly equal to the real input 

disturbance.  Of course, the condition will hold only for a 

specific bandwidth determined by the closed loop poles. 

Moreover, the design of the    depends on the type of 

the disturbance either be a real external independent 

disturbance acting on the system or an internal 

disturbances coming from unknown or un-modeled 

dynamics.  For more practical information refer to [31], 

and for the disturbance observer Q-Filter type refer to 

[32-34].  So generally, when the disturbance is simply a 

constant bias or its time or frequency behavior is 

unknown.  Then, it can be generally modeled as 

(variable) constant when the observer bandwidth or their 

poles are (as a rule of thumb) at least ten times faster than  

 

  

   

  
   

      

   

    
 ̂  

    

Estimated dynamics 

Output disturbance estimator 

     
  

 

Estimated inverse dynamics 

- 

- 

    

Input disturbance estimator 

Figure. 9: Output-Input Disturbance Observer. 
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the disturbance bandwidth.  This leads of course to high 

gain design that its application could be limited by the 

noise ratio in the system.  Otherwise, it would be better to 

be modeled within    according to the IMP, this could 

achieve better observation with relatively low observer 

gain. The idea is also presented using state space models 

in section VI. 

 

B. Model Following as Disturbance Canceller 

Now, instead of observing the (input) disturbance 

acting on a process and then using its estimated signal to 

compensate the disturbance effect on the output, 

alternatively, the process can be forced to follow 

specified dynamics given as a (linear/nonlinear) model.  

By doing so, the output response becomes as a projection 

of the specified dynamics, even when the process has 

external disturbances, as long as these disturbances and 

model mismatches are in the working bandwidth of the 

closed loop system. 

This can be done, for example, by considering the 

(inexact) model following case, particularly when the 

process inverse dynamics are not available or unknown, 

therefore from Fig. ‎11, when the block ( ̂         ⁄ ) is 

substituted by or put equal to one, then the system output 

becomes 

       
     (        ̂    )

            
     

              
     

            
 

              
     

            
  

(27) 

From equation (‎3.27), if  ̂           then the 

closed loop response to the new input      

becomes              , and for the case,  

when   ̂          ,              and 

       ̂       the closed loop response becomes 

        ̂      

This means that the closed loop system follows the 

desired dynamics  ̂     in perspective of the new 

input      .  This concept is a complementary concept of 

the disturbance observer, where the disturbance 

cancelling is done by using the estimated dynamics and 

the disturbances, while (inexact) model following is done 

by giving the desired system dynamics. 

Moreover, the system suppresses the effect of the 

disturbance and the measurement error in the specified 

system bandwidth where the condition (            ) 

holds, for more details about model following control 

refer, for example, to [35]. 

 

 

 

VI. STATE AND DISTURBANCE 

OBSERVER IN STATE SPACE 

The modern state observers can be traced back to 

1960, where the idea of the stochastic state observer [36] 

was introduced and in 1961 developed as Kalman-Bucy-

Filter [37].   Later in 1964, the deterministic version was 

reintroduced by Luenberger [38]. For more information 

about the state and disturbance observers refer, for 

example, to [39]. 

 

A. Extended Sinusoidal Disturbance Observer 

The extended disturbance can be generated by using a 

sinusoidal signal generator in state space format with a 

constant angular frequency (see, e.g. [40]) as 

                (28) 

        ̇                (29) 

 ̇                            (30) 

The sinusoidal generator system can be put in a state 

space model as  
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Figure. 10: Computing the Input Disturbance without Using the 
Inverse of Estimated Dynamics. 
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Figure. 11: Model Following Control Concept. 
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[
 ̇     

 ̇     
]  *

  
    

+ [
      
      

]   

      [  ] [
      
      

]  

(31) 

Alternatively, the states can also be defined as 

                                (32) 

 ̇                        (33) 

 ̇                          (34) 

Then, the state space sinusoidal generator system can 

alternatively be put in the form 

[
 ̇     

 ̇     
]  *

  
   

+ [
      
      

]   

      [  ] [
      
      

]  

(35) 

or generally as variable frequency derived from a time 

variant angular position      

                                     (36) 

 ̇       ̇              ̇           (37) 

 ̇        ̇               ̇           (38) 

Therefore, the state space model becomes as 

[
 ̇     

 ̇     
]  [

  ̇   
  ̇    

] [
      
      

]   

      [  ] [
      
      

]  

(39) 

 

There are a lot of periodic disturbance compensation 

methods based on disturbance observers, for example, by 

designing a set of linear time-invariant observers for a set 

of disturbance frequencies in some operating regions, that 

results in gain scheduled control, for example, Bohn, 

Cortabarria, Härtel and Kowalczyk have suggested that 

the observer design can be done by using pole placement 

techniques or by designing an optimal stationary Kalman 

filter [41].   

Moreover, robust control LPV-techniques can also be 

used to design the observer and controller vectors, for 

example, Du and Shi as well as Du, Zhang, Lu and Shi 

have developed H∞ and LPV methods respectively for 

active vibration control applications [42, 43].  

Furthermore, Ballesteros and Bohn have developed and 

applied the robust control LPV design algorithms in the 

discrete-time format [44, 45].  In addition, Kinney and de 

Callafon have developed a study of rapidly varying 

frequencies regulation guarantee [46].  For extra 

discussion about the so called ―waterbed effect‖ or 

―spillover‖ that accompanies these algorithms, see for 

example, [41] and [47]. 

    

B. State and Disturbance Observer as Model Follower 

The state observer can also be interpreted to work as a 

model follower, for instance, if the desired system 

dynamics are given in the state observer model, then the 

disturbance state can be used to cancel the external 

disturbances and internal disturbances in terms of 

dynamic difference between the desired model and the 

real one.  But these again need high loop gain, or it will 

only work in the observer bandwidth represented by the 

observer poles, which have been set by the observer gain 

vector. 

 

VII. ADAPTIVE PERIODIC 

DISTURBANCE CANCELATION 

Another way of cancelling the periodic disturbance 

effect on the system output is by using a direct estimation 

and cancelation methods of the input periodic 

disturbance.  These methods have been mostly developed 

by the signal processing community for active noise 

(sound) and vibration cancelation (control) applications.  

For example, consider the system presented in Fig. 12 

below, where the process is disturbed by a harmonic 

input disturbance with a known frequency (  ).  

Therefore, a simple solution is to generate a harmonic 

(sinusoidal) signal as the following equation 

       ̂                          (40) 

or alternatively as 

       ̂                                 (41) 

where 

   √                     (
 

 
)  (42) 

and to tune its parameters, the amplitudes α and β, or 

magnitude    and phase shift   , until the effect of the 

harmonic disturbance is completely (vanished) canceled 

out [48].  The parameter adaptation could be practically 

done manually as Conover (1956) demonstrated an active 

noise cancellation system for transformer noise [49], or 

by using adaptive algorithms, for example, the least mean 

squares algorithm and its variants [49-53].  These 

algorithms are usually known as adaptive feed-forward in 

signal processing literature, although they are ―truly and 

purely a feedback control law‖ [22].  Moreover, Bodson 

has shown that these adaptive feed-forward controllers 

can be equivalent under certain conditions to the internal 

model principle linear controllers [54]. 

However, the advantage of using the LTI-IMP 

periodic disturbance observer is that the closed loop 

stability can be computed and proven, provided that an 

accurate mathematical model for the targeted process is 

available at least in the operating bandwidth.  But, on the 

other hand, for this adaptive feed-forward controller, the 

closed loop stability analysis depends on the adaptation 
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algorithm used to tune its parameters which has usually a 

time-varying nonlinear characteristics, this makes the 

stability analysis difficult to prove in general. 

Nevertheless, an advantage of this adaptive feed-

forward control, when the adaptive algorithm is 

deactivated after the convergence of its parameters to the 

optimal ones, especially when the disturbance parameters 

are not time varying, so that the estimated disturbance 

signal compensates or cancels out the periodic 

disturbance effect on the system output.  Then, at this 

situation the pseudo feed-forward controller becomes a 

true feed-forward controller, and therefore it will not 

affect the system closed loop dynamics anymore, where 

they can then be freely designed to fulfill the stability and 

set point design demands separately. 

 

 

 

VIII. COMMENTS AND CONCLUSIONS 

As presented in this paper, methods of periodic 

disturbance rejection by using feedback control only as 

well as methods of periodic disturbance compensation by 

using add-on feed-forward control are briefly introduced, 

where their similarities, advantages and disadvantages 

between the algorithms are pointed out and discussed. 

As has been shown, the periodic disturbance can be 

rejected to some extent by using only a feedback 

controller, for example, a PID controller.  But for most of 

the design circumstances the periodic disturbance is not 

perfectly rejected except if the model of the periodic 

disturbance is belt in the controller, which is according 

the internal model principle, for example, by 

implementing the periodical disturbance rejection filter.  

However, this is going to lead to that the controller design 

will be further more complicated, and even worse 

sometimes, there will be an interaction between the set 

point tracking and periodic disturbance rejection 

demands. 

In general, for the case of infinite harmonics 

(periodic) disturbances a repetitive controller can be used 

to reject them, also the iterative learning control can be 

applied to reject the periodic disturbances, although it is 

originally designed to target the repeated set point 

trajectory tracking. 

Therefore, methods of the feed-forward algorithms 

are explored, where the feed-forward is implemented by 

using a disturbance observer to estimate the disturbance. 

Where, the disturbance observer is constructed either as 

transfer function model based or state space model based.  

However, by using the estimated disturbance from these 

types of observers that use the measured output in the 

disturbance estimation, this makes the system works as 

pure feedback system, though an exception can be made, 

when the model is perfect, but this case is seldom in 

practice.   Therefore, the problem of set point tracking 

and the periodic disturbance rejection will no longer be 

separate.  Also, the interpretation of the model follower 

as disturbance canceller is given, both for the transfer 

function model based and the state space model based 

algorithms.  

Consequently, the methods of adaptive periodic 

disturbance cancelation, intensively implemented in 

active noise and vibration control applications, are 

reviewed, where, they turned out to be working the same 

as a feedback controller with more complication because 

of the adaptation algorithms, but with still minimum 

advantage that can be a great benefit in practice, 

particularly, when the parameters converge to the optimal 

ones and the adaptation is switched off, then the feed-

forward controller becomes a true feed-forward 

controller, this will separate the set point tracking design 

demands and the periodic disturbance rejection.   

 Moreover, this work has been done with the aim of 

developing and applying these algorithms to suppress the 

periodic disturbances that take place in drive-load 

(source-drain) systems in general, and in particular for 

example, to suppress the vibrations generated by the drive 

(rotational reciprocating engine) in automobile flexible 

chasse as well as damping the vibration side effect (noise) 

in the passenger compartment to increase the comfort 

factor in the car. 
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