# Hydraulic Analysis and Cost Optimization of Water Network by Using the EPANET Software

Abdulhamid EL Edris Saad University of Tubruk Idress S F Saad Bright Star university

Abstract— The large water network leads to a large set of nonlinear equations that need to be solved by either by Hard Darcy or Newton Raphson methods. Those two methods need a large code to analyze and simulate the network which takes large time. EPANET software can do a hydraulic analysis of the water network. In addition, the software can run with time duration which means that the result can be obtained as function in time. However, writing a code gives the result in the steady state manner because the Bernoulli's equation was derived under the assumption of steady state. In this paper, a hydraulic analysis of water network of town of about 7000 population under an area of 0.6 km<sup>2</sup> and 2125 m<sup>3</sup>/day water demand is done by getting the nodal pressure, pipe discharge, and total head at the significant time hour of the day by using the EPANET software. Also, an optimization is done to minimize the energy cost of the electricity by the investigation of what minimum level that the tank discharge water without using a pump. Therefore, nine hours make the network operate by gravity main and 15 hours by pumping main. That can be done only by EPANET software result table that show how many hours that can make the pump off instead of using it the whole day. The energy cost minimized by 38 %.

*Index Terms:* EPANET, hydraulic analysis, network, cost, pump.

# I. INTRODUCTION

Design of water distribution network is based on the minimum cost consideration not only the hydraulic analysis. Pumping electricity and pipe materials are the two main parts that affect the capital cost of the network [Prabhata, 2007]. "Hydraulic analysis and optimization using EPANET (the U.S Environmental protection agency) contains a state- of - art hydraulic analysis engine that has no limit on the size of the network. It uses Hazen- Willimas, Darcy- Weisbach or Chezy- manning formulas" [ Lewis, 2000]. In this paper the hydraulic analysis steps of EPANET software will be done to tabulate the result of the of the flow properties of the nodes and the pipes as a function of time. Also, from these results an tank level and nodal pressure optimization to minimize the cost of the pumping energy.

Yungyu Chang & eta al [2018] concluded that the cost of energy can be reduced by the idea of reducing the supplied water demand once the price of the electricity is high and increasing it when the price is low by using storage tanks. Vogelesang [2009] quantitatively discussed the cost can be reduced to 27 % with a 10 % decreasing the speed of the pump. Viholainen et al [2013] studied that using two pumps in parallel, two frequency converters, and one programmable logic controller which make a high efficiency that lead to low power cost. Ioan Sarbu [2016] described four strategies to get a high energy efficiency: variable control system speed according to water demand, pumped storage tanks. Elevated storage tanks floating in the system, and pumping station integrated into the network.

Morfecai [2009] concluded that the energy can be saved by storing the excess water in reservoirs during the off peak period, and supplying from the reservoir during the peak period while reducing the pumps production at this time

This paper will cover two main approaches: the first one illustrates the hydraulic analysis - defining the network under study, importing map from AUTOCAD, inserting data to the network, and getting the results. The second approach is the optimization of the time series between tank level and the nodal pressures by investigating the results that tabulated from the first approach. Finally the results of the two approaches will be showed and discussed in the last sections.

*Paragraph indentation:* first-line 3.7 mm (0.15 in). For Abstract and Index Terms, no first-line indentation need.

# II. THE CASE STUDY

The network is in Alwater town in Tobruk- Libya. It contains of 1025 houses, 1 school, 1 Masjid, and 2 facilities. It covers an area of 0.6  $\text{Km}^2$  and slop of 0.05 (2.8°). The demand/ day is shown in table (1).

Received 27 Sep, 2018; revised 22 Oct , 2018; accepted 1 Dec, 2018.

Available online December 3, 2018.

| Demand type | Demand/<br>person<br>L/s | Person/ day<br>P/day | Total demand<br>m <sup>3</sup> /day |
|-------------|--------------------------|----------------------|-------------------------------------|
| Person      | 300                      | 7175                 | 2152.5                              |
| Masjid      | 25                       | 400                  | 10                                  |
| Facilities  | 25                       | 40                   | 1                                   |

# III. THE METHOD

#### A. THE NETWORK CONFIGURATION:

The town is drawn by AutoCAD software then exported to Google Earth to specify the elevations. The drawn town then exports to EPANET software to start drawing the network. The google earth image of the town is shown in figure (1a) and the network is shown in figure (1b).



Figure (1a). Google Earth Image of the Town Under Study



Figure (1b). The Network Under Study

## B. THE ANALYSIS OF THE NETWORK

#### 1. LINK EDITING WINDOW

In EPANET pipes and pumps are called links. The diameters of pipes (change from 150,200, and 300 mm), the lengths (getting from AutoCAD software), roughness, and pipe status (open or closed) are editing as shown in figure (2).

| Pipe 28        |        | × |
|----------------|--------|---|
| Property       | Value  |   |
| *Pipe ID       | 28     | * |
| *Start Node    | 34     | 1 |
| *End Node      | 35     |   |
| Description    |        |   |
| Tag            |        |   |
| *Length        | 116.66 |   |
| *Diameter      | 300    |   |
| *Roughness     | 0.0025 |   |
| Loss Coeff.    | 0      |   |
| Initial Status | Open   | - |

Figure (2). Pipe Diameters and Length

For the pump, pump selection curve and pump property (speed, status, and price) need to be inserted as shown in figure (3)

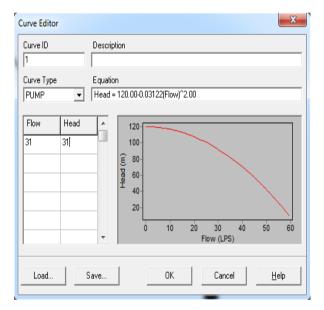



Figure (3). Pump Selection Curve and Pump Property

# 2. JUNCTION EDITING

Nodes and Tanks are considered as a junction i EPANET. The node has the demands (L/s), and elevations as shown in figure (4) and Tanks has the elevation, the levels (maximum, initial, and minimum) and the diameter of the tank as shown in figure (5).

| Junction 892      | 8        |
|-------------------|----------|
| Property          | Value    |
| *Junction ID      | 892 🔺    |
| X-Coordinate      | 6748.37  |
| Y-Coordinate      | 13162.11 |
| Description       |          |
| Tag               |          |
| *Elevation        | 132      |
| Base Demand       | 0.0243   |
| Demand Pattern    |          |
| Demand Categories | 1        |
| Emitter Coeff.    |          |

Figure (4). Node Editing

| Tank 1         |          | × |
|----------------|----------|---|
| Property       | Value    |   |
| *Tank ID       | 1        | * |
| X-Coordinate   | 8560.13  |   |
| Y-Coordinate   | 10338.09 |   |
| Description    |          |   |
| Tag            |          |   |
| *Elevation     | 162      |   |
| *Initial Level | 15.2     |   |
| *Minimum Level | 0        |   |
| *Maximum Level | 15.2     |   |
| *Diameter      | 15       | - |

Figure (5). Tank Editing

# 3. TIME DUNRATION AND MAP EDITING

In this window the time duration of network and the hourly viewed map are also edited as shown in figure (6)

| Property            | Hrs:Min |
|---------------------|---------|
| Total Duration      | 24      |
| Hydraulic Time Step | 1:00    |
| Quality Time Step   | 0:05    |
| Pattern Time Step   | 1:00    |
| Pattern Start Time  | 0:00    |
| Reporting Time Step | 1:00    |
| Report Start Time   | 0:00    |
| Clock Start Time    | 12 am   |
| Statistic           | None    |

Figure (6). Time Duration of Network and the Hourly Map

#### 4. UNIT EDITIONG

| ID Labels Properties<br>Option | Default Value |     |
|--------------------------------|---------------|-----|
| Flow Units                     |               | 1 - |
| Headloss Formula               | MGD           | jO  |
| Specific Gravity               | AFD -         |     |
| Relative Viscosity             |               |     |
| Maximum Trials                 | MLD           |     |
| Accuracy                       | CMH<br>CMD    |     |
| If Unbalanced                  | Continue      |     |
| Default Pattern                | 1             |     |
| Demand Multiplier              | 1.0           |     |

The window in figure (7) shows the units and the fluid properties

# Figure (7). The Units and the Fluid Properties

## C. THE OPTIMIZATION(COST ENERGYREDUCTION)

#### 1. GRAVITY LIMITATION

Pump must be used to overcome the negative pressures that seen in the majority of the network once only gravity main are used. However, the network can be operated without using pump for the first nine hours which it will save energy. So, EPANET is run to make the network operates partly by gravity until the negative pressure is at the minimum point (the minimum level of the tank- the maximum hour of the day that make the network operates gravitationally) and partly by using pump to increase the pressure of the network. Table (2) show the minimum hours that makes the tank work without pump. In other words the result of table (2) showed the first number of hours that the network should operate by gravity (no electricity price) and the number of hours that the network operate by pump.

Table (2). The Negative Pressure Before Inserting Pump

| III Network Table - Nodes at 11:00 Hrs |               |           |               |      |  |  |
|----------------------------------------|---------------|-----------|---------------|------|--|--|
| Node ID                                | Demand<br>LPS | Head<br>m | Pressure<br>m | Qi 🔺 |  |  |
| Junc 8                                 | 0.00          | 159.80    | -0.20         |      |  |  |
| Junc 9                                 | 0.00          | 158.86    | -0.14         |      |  |  |
| June 10                                | 0.00          | 158.78    | -0.22         |      |  |  |
| June 11                                | 0.00          | 158.64    | 0.64          |      |  |  |
| June 12                                | 0.00          | 158.49    | 0.49          |      |  |  |
| June 13                                | 0.00          | 158.41    | 1.41          |      |  |  |
| June 14                                | 0.00          | 157.98    | 7.98          |      |  |  |
| June 15                                | 0.00          | 157.79    | 9.79          |      |  |  |
| Junc 16                                | 0.00          | 157.69    | 11.69         |      |  |  |
| June 17                                | 0.00          | 157.62    | 11.62         |      |  |  |
| Junc 18                                | 0.00          | 157.44    | 16.44         |      |  |  |
| June 19                                | 0.00          | 157.41    | 18.41         |      |  |  |
| Junc 20                                | 0.00          | 157.39    | 19.39         |      |  |  |
| June 21                                | 0.00          | 157.34    | 19.34         |      |  |  |
| June 22                                | 0.00          | 157.27    | 21.27         |      |  |  |
| June 23                                | 0.00          | 157.24    | 23.24         |      |  |  |
| June 24                                | 0.00          | 157.22    | 24.22         | -    |  |  |

#### 2. PUMPING MAIN OPERATING (ADDING PUMP)

Pump is added to the network to work automatically by using EPANET control window as shown in figure (8).

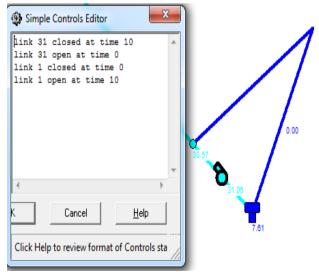



Figure (8). EPANET Control Code for Pipe and Pump Operation

# IV. THE RESULTS AND DISCUSSION

## A. THE HYDRALUIC ANALYSIS RESULTS

#### 1. THE NODAL RESULT AT CLOCK HOUR

Table (3) show the results of EPAET for node (766-732 as an example) at hour number 3 which has the head and pressure distributions for that nodes during the

gravity operation. However, table (4) show the same parameter but in pumping main case at hour number12 as an example. As can be seen the pressures and heads increased once the pumping main is used.

Table (3). Elevation, Base Demand, Head, Pressure by Gravity for Node(766-732) at Time 3:00

## 2. THE PIPE RESULTS AT CLOCK HOUR

EPANET run at hour number3 for the pipes (2-16 as an example) to show the discharges that flow in that pipes, the head losses in that pipes, and the friction factor due to the viscosity of the water.

| Table (5). Length, Diameter, Roughness, Pipe Discharge, Head Losses, |
|----------------------------------------------------------------------|
| and Friction Factor at Hour Number 3 for Pipes (3-16)                |

| 🏢 Network Table - Nod | les at 3:00 Hrs |                    |           |               | an         |
|-----------------------|-----------------|--------------------|-----------|---------------|------------|
| Node ID               | Elevation<br>m  | Base Demand<br>LPS | Head<br>m | Pressure<br>m | Link ID    |
| Junc 766              | 126             | 0.0486             | 174.53    | 4:            | Pipe 3     |
| June 612              | 126             | 0.0486             | 174.54    | 4:            | Pipe 4     |
| Junc 607              | 126             | 0.0243             | 174.54    |               | Pipe 5     |
| June 577              | 127             | 0.0243             | 174.54    | 4             | Pipe 6     |
| Junc 610              | 127             | 0.0243             | 174.54    | 4             | Pipe 7     |
| June 757              | 127             | 0.0243             | 174.52    | 4             | Pipe 8     |
| Junc 874              | 127             | 0.0243             | 174.52    | 4             | Pipe 9     |
| June 863              | 127             | 0.0243             | 174.52    | 4             | Pipe 10    |
| June 655              | 127             | 0.0243             | 174.53    | 4             | Pipe 11    |
| June 873              | 127             | 0.0243             | 174.52    | 4             | Pipe 12    |
| June 915              | 127             | 0.0486             | 174.52    | 4             | Pipe 14    |
| Junc 857              | 127             | 0.0243             | 174.52    | 4             | Pipe 15    |
| Junc 919              | 127             | 0.0486             | 174.52    | 4             | Pipe 16    |
| Junc 920              | 127             | 0.0486             | 174.52    | 47            | .5Z        |
| Junc 619              | 127             | 0.0243             | 174.54    | 47            | -fgure (9) |
| Junc 789              | 128             | 0.0243             | 174.53    | 46            | gample)    |
| June 732              | 128             | 0.0243             | 174.53    | 46            | umber1 to  |
| 1 704                 | 100             |                    | 17150     |               | he pump    |

 Table (4). Elevation, Base Demand, Head, Pressure for Node (766-732)

 at Hour Number12 (Pumping Main)

| Network Table - Nodes at 12:00 |                | X                  |           |               |   |
|--------------------------------|----------------|--------------------|-----------|---------------|---|
| Node ID                        | Elevation<br>m | Base Demand<br>LPS | Head<br>m | Pressure<br>m | • |
| Junc 766                       | 126            | 0.0486             | 199.80    | 73.80         |   |
| Junc 612                       | 126            | 0.0486             | 199.81    | 73.81         |   |
| Junc 607                       | 126            | 0.0243             | 199.81    | 73.81         |   |
| Junc 577                       | 127            | 0.0243             | 199.81    | 72.81         |   |
| Junc 610                       | 127            | 0.0243             | 199.81    | 72.81         |   |
| Junc 757                       | 127            | 0.0243             | 199.79    | 72.79         |   |
| Junc 874                       | 127            | 0.0243             | 199.79    | 72.79         |   |
| Junc 863                       | 127            | 0.0243             | 199.79    | 72.79         |   |
| Junc 655                       | 127            | 0.0243             | 199.80    | 72.80         |   |
| Junc 873                       | 127            | 0.0243             | 199.79    | 72.79         |   |
| Junc 915                       | 127            | 0.0486             | 199.80    | 72.80         |   |
| Junc 857                       | 127            | 0.0243             | 199.79    | 72.79         |   |
| Junc 919                       | 127            | 0.0486             | 199.80    | 72.80         |   |
| Junc 920                       | 127            | 0.0486             | 199.80    | 72.80         |   |
| Junc 619                       | 127            | 0.0243             | 199.81    | 72.81         |   |
| Junc 789                       | 128            | 0.0243             | 199.80    | 71.80         |   |
| Junc 732                       | 128            | 0.0243             | 199.81    | 71.81         |   |
| 1 701                          | 100            | •                  | 100.01    | 71.01         |   |

| III Network Table - Links at 3:0 | ) Hrs       |                |                 | Î           |                       |                 | x |
|----------------------------------|-------------|----------------|-----------------|-------------|-----------------------|-----------------|---|
| Link ID                          | Length<br>m | Diameter<br>mm | Roughness<br>mm | Flow<br>LPS | Unit Headloss<br>m/km | Friction Factor |   |
| Pipe 3                           | 193.45      | 300            | 0.0025          | 24.96       | 0.38                  | 0.018           |   |
| Pipe 4                           | 36.39       | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 5                           | 60.75       | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 6                           | 65.42       | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 7                           | 34.59       | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 8                           | 189.35      | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 9                           | 82.00       | 300            | 0.0025          | 17.13       | 0.19                  | 0.019           |   |
| Pipe 10                          | 93.23       | 300            | 0.0025          | 11.66       | 0.10                  | 0.021           |   |
| Pipe 11                          | 73.72       | 300            | 0.0025          | 11.66       | 0.10                  | 0.021           |   |
| Pipe 12                          | 164.01      | 300            | 0.0025          | 11.66       | 0.10                  | 0.021           |   |
| Pipe 14                          | 36.57       | 300            | 0.0025          | 8.29        | 0.05                  | 0.023           |   |
| Pipe 15                          | 88.54       | 300            | 0.0025          | 8.29        | 0.05                  | 0.023           |   |
| Pipe 16                          | 123.39      | 300            | 0.0025          | 8.29        | 0.05                  | 0.023           |   |
| •                                |             |                |                 |             |                       | Þ               |   |
| (.52                             |             |                |                 |             |                       |                 |   |

<sup>4</sup>Hegure (9) show the pressure distribution for node number (203 as an accomple) was tracked and concluded that the pressure from hour number1 to hour number9 is low because the network works by gravity <sup>4</sup>m<sup>4</sup> this time duration. Then the pressure is getting high after turning on **The pump** and turn off the bypass pipe at the same time. Figure (10) shows the head for the tank which is from 177m to 162 m( from the top to bottom of the tank).



Figure (9). Time Series Pressure for Node Number 203

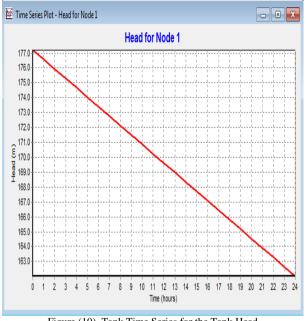



Figure (10). Tank Time Series for the Tank Head

#### **B. THE OPTIMIZATION RESULTS**

As shown in figure (11), the pump and bypass pipe system are connected so that the pipe is on for the first ninth hours and the pump is on for the rest of fifteenth hours as shown in table (6) which illustrates the pump time series as a function of the flow, the head losses, and the pump status.

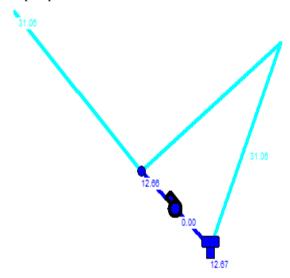



Figure (11). Adding Pump with Bypass Pipe

Table (6). Pump Time Series with (Flow, Head Loss, Status)

| III Time Series |             |                       |        |
|-----------------|-------------|-----------------------|--------|
| Time<br>Hours   | Flow<br>LPS | Unit Headloss<br>m/km | Status |
| 0:00            | 0.00        | 0.00                  | Closed |
| 1:00            | 0.00        | 0.00                  | Closed |
| 2:00            | 0.00        | 0.00                  | Closed |
| 3:00            | 0.00        | 0.00                  | Closed |
| 4:00            | 0.00        | 0.00                  | Closed |
| 5:00            | 0.00        | 0.00                  | Closed |
| 6:00            | 0.00        | 0.00                  | Closed |
| 7:00            | 0.00        | 0.00                  | Closed |
| 8:00            | 0.00        | 0.00                  | Closed |
| 9:00            | 0.00        | 0.00                  | Closed |
| 10:00           | 31.06       | -30.96                | Open   |
| 11:00           | 31.06       | -30.96                | Open   |
| 12:00           | 31.06       | -30.96                | Open   |
| 13:00           | 31.06       | -30.96                | Open   |
| 14:00           | 31.06       | -30.96                | Open   |
| 15:00           | 31.06       | -30.96                | Open   |
| 16:00           | 31.06       | -30.96                | Open   |
| 17:00           | 31.06       | -30.96                | Open   |
| 18:00           | 31.06       | -30.96                | Open   |
| 19:00           | 31.06       | -30.96                | Open   |
| 20:00           | 31.06       | -30.96                | Open   |
| 21:00           | 31.06       | -30.96                | Open   |
| 22:00           | 31.06       | -30.96                | Open   |
| 23:00           | 31.06       | -30.96                | Open   |
| 24:00           | 31.06       | -30.96                | Open   |

After adding the pump the positive pressures is clearly seen as shown in table (7) compared to the same result before adding the pump that can be seen in table (2).

| Table (7). Positive | Pressure aft | ter Inserting | Pump |
|---------------------|--------------|---------------|------|
|---------------------|--------------|---------------|------|

| Network Table - Nodes at 11:00 |               | × |
|--------------------------------|---------------|---|
| Node ID                        | Pressure<br>m |   |
| June 8                         | 40.66         |   |
| June 9                         | 41.58         |   |
| June 10                        | 41.58         |   |
| June 11                        | 42.57         |   |
| June 12                        | 42.55         |   |
| June 13                        | 43.55         |   |
| June 14                        | 50.51         |   |
| June 15                        | 52.49         |   |
| June 16                        | 54.49         |   |
| June 17                        | 54.48         |   |
| June 18                        | 59.46         |   |
| June 19                        | 61.46         |   |
| June 20                        | 62.46         |   |
| June 21                        | 62.45         |   |
| June 22                        | 64.45         |   |
| June 23                        | 66.44         |   |
| June 24                        | 67.44         |   |
| June 25                        | 68.44         | Ŧ |

The next two tables show the cost of electricity once the pump is operated for the whole day which was 21.54 \$/day and the cost of electricity once the network operates partly by gravity and partly by pump which decreased to 12.57 \$/day.

Table (8) Electricity Cost for Full Time Pump (Cost/ Day)

| 🗐 Energy Report |                        |                       |              |                   |                |              | X |
|-----------------|------------------------|-----------------------|--------------|-------------------|----------------|--------------|---|
| Table Chart     |                        |                       |              |                   |                |              |   |
| Pump            | Percent<br>Utilization | Average<br>Efficiency | Kw+hr<br>/m3 | Average<br>Kwatts | Peak<br>Kwatts | Cost<br>/day |   |
| 1               | 100.00                 | 75.00                 | 0.11         | 12.82             | 12.82          | 21.54        |   |
| Total Cost      |                        |                       |              |                   |                | 21.54        | , |

Table (9). electricity cost for part time pump (cost/ day)

| Energy Report |                        |                       |              |                   |                |              |
|---------------|------------------------|-----------------------|--------------|-------------------|----------------|--------------|
| Table Chart   |                        |                       |              |                   |                |              |
| Pump          | Percent<br>Utilization | Average<br>Efficiency | Kw-hr<br>/m3 | Average<br>Kwatts | Peak<br>Kwatts | Cost<br>/day |
| 1             | 58.33                  | 75.00                 | 0.11         | 12.82             | 12.82          | 12.57        |
| Total Cost    |                        |                       |              |                   |                | 12.57        |
| •             |                        |                       |              |                   |                | Þ            |

#### V. CONCLUSION

EPANET software can run the network at any time series which help the user to investigate and analyze the solution step by step. The analysis solution time series steps help us to watch at which hour the pump need to be inserted to the network so that the network can be worked at the first part by gravity because of the level of water in the tank is still high. Therefore, by the optimization of adding pump at hour number 10, the energy was saved during using gravity at this first part instead of using the pump all the day. Finally, the EPANET can have all type of results that need to be shown. It also has a control page that can be coded by the user to control the network. Another advantage of EPANET software is that the demand can be controlled to supply the water to zones regarding to their need of water demands which will decrease the losses in water during the day.

## REFERENCES

 Prabhata, K, (2007), Design of water supply pipe network, John Wiley & Sons, USA, Ch1
 Lewis A (2000) EPANET user manual CINCINNATI OH

[2] Lewis, A, (2000), EPANET user manual, CINCINNATI, OH 45268, USA

[3] Yungyu Chang & eta al, (2018), Energy Cost Optimization for Water Distribution Networks Using Demand Pattern and Storage Facilities, MDPI journal, vol:10

[4] Vogelesang, H. ,(2009), Two approaches to capacity control, World Pumps Journal, 511, 26–29.

[5] Viholainen, & eta al., (2013), Energy-efficient control strategy for variable speed-driven parallel

pumping systems. Energy Effic. journal, 6, 495-509.

[6] Ioan Sarbu, (2016), A Study of Energy Optimization of Urban Water Distribution Systems Using Potential Elements, MDPI journal, doi:10.3390/w8120593.

[7] Morfecai, (2009), aspect of energy efficiency in water supply system, 5<sup>th</sup> IWA water Loss Reduction Specialist Conference, 85-90