
20 THE INTERNATIONAL JOURNAL OF ENGINEERING AND INFORMATION TECHNOLOGY (IJEIT), VOL.5, NO.1, 2018

 www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT008

 Software Architecture and Desgin for Online

Registration System

Abstract—This paper presents an example of Software

Architecture and design for online registration system.

Software design is an early phase of the Software Development

Life Cycle (SDLC). During this phase, software designers

model the system and assess its quality so that improvements

may be made before the software goes into the production

phase. The goal of software design is to build a model that

meets all customer requirements and leads to successful

implementation. As software systems continue to grow in

scale, complexity, and distribution, their proper design

becomes extremely important in software production. The

architecture design representation is derived from the system

requirement specification and the analysis model. Multi-tier

architecture is commonly used for distributed systems. It

usually consists of three element types: client, middleware

server, and data server. The Unified Modeling Language

(UML) used to model the problem domain; describe the user

requirements; identify significant architecture elements

during software design, such as classes and objects; describe

behavior and interactions among these elements; and organize

the software structure, specify its constraints, describe the

necessary attributes, and more.

Index Terms: Software engineering, software designers,

Software Architecture, Multi-tier, Unified Modeling Language

I. INTRODUCTION

he architecture design defines the relationship between

major structural elements of the software, the styles

and design patterns that can be used to achieve the

requirements defined for the system, and the constraints

that affect the way in which architecture can be

implemented [1]. The architecture design representation is

derived from the system requirement specification and the

analysis model. Software architects and designers are

involved in this process. They translate (map) the software

system requirements into architecture design. During the

translation process, they apply various design strategies to

divide and conquer the complexities of an application

domain and resolve the software architecture.

 Software architecture plays a very important role in the

Software Development Life Cycle. The architecture design

provides a blueprint and guideline for developing a

software system based on its requirement analysis

specification. The architecture design embodies the earliest

decisions that have a decisive impact on the ultimate

success of the software product. The design shows how the

system elements are structured, and how they work

together. An architecture design must cover the software's

functional and nonfunctional requirements as well. It serves

as an evaluation and implementation plan for software

development and software evolution [9].

This paper describes “how the system shall work”. It

illustrates the three standard components of software

design: the architectural design, module interface design

and internal module design..

 The system shall be accessible, with differing privilege

levels, to public users, current students, faculty members,

graduate program directors, administrative officers and the

system monitors.this system allows potential students to

apply for admission and allows current students to register

for courses on the web, allows faculty to check related

information, such as view class list, view teaching

schedule, allows graduate program director to manage

course registration information, allows administrative

officers to manage students’ academic records and faculty

members’ teaching records, and also allows system monitor

to open new accounts, update accounts and maintain the

web site [5].

II. ARCHITECTURAL DESIGN

A. Design Rationale

 The goal of the architectural design is to derive the

structure of the system and determine the major data

structures. Due to the nature of the software development

life cycle that is the constant changes in both functional

requirements and non-functional requirements, the key

principle of a good software design is the concept of

“design for change”. The software should have the

potentials to adapt to as many and a severe change as

possible during the course of development and even after

the system is already in use. The realization of these

potentials depends on that the architecture of the system is

Issa Hussein Manita

Department of Software Engineering

Misurata University, Libya
eisa@hotmail.com

T

ـــ

Received 29 May, 2018; revised 20 June, 2018; accepted 11 July,

2018.

Available online Jul 13, 2018.

mailto:eisa@hotmail.com

Issa Manita/ Software Architecture and Desgin for Online Registration Syst 21

 www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT008

designed to bear important features such as information

hiding, model-view-control structure and loose coupling of

functions between modules. The design should also be

abstract and easy to be understood [9 ,8].

 The Application Framework for the system is designed to

be an integrated and consistent collection of APIs,

protocols, services, and convention that provides an open,

standard based, scalable and complete foundation for

developing and deploying the web application solutions. At

the heart of the Framework is a single, unifying Java-based

programming model for building system. The JavaServer

Page TM (JSP) is a key component serving as the preferred

request handler and response mechanism. This technology

ensures us to easily develop high quality, maintainable Web

applications.

 Figure 2.1 illustrates the three-tier conceptual model of

this Web application. The client tier is composed of

multiple clients, which request services from the middle

tier. The middle-tier consists of two sub-tiers, the Web

Server and Application Server. The Web server contains

JSP pages as the event handler, and the Application server

contains JavaBean as the dynamic component of logical

unit. They access data through the database tier, apply

logical rules to data, and transfer back the results to the

client tier. The JSP page and Bean in the server of middle

tier play a vital role in the three-tier application.

Figure 2.1: System Conceptual Model

 The separation of user interface and program logic in a

JSP page allows for a very convenient delegation of tasks

between web content authors and developers. As a result of

this, the implementation will be more reusable and

manageable.

 A web-based application such as this system differs from

a traditional client-server system in that the connection

between the client and server only exists during a page

request. Once the request is fulfilled, the connection is

broken. All activities on the server, as affected by the user,

occur during the page request. Business rules on the server

are only activated by the execution of JSP pages inside the

requested pages. In other words, business objects are not

always accessible when handling individual user interface

requests.

III. SYSTEM ARCHITECTURE

A. Architectural Diagram

 The system has to be able to respond to asynchronous

events from users. Users are allowed to interact with the

system by viewing or querying and even updating

information through the system. The interactive

architecture best addresses these requirements. On the other

hand, the system contains no predefined sequence of action

and only responds according to user inputs (either data

input or control input), thus qualifies it as an event-driven

interactive system. The system should also have the

characteristics of the user friendliness and the database

orientation.

Figure 2.2: Architecture Diagram of the System

Figure 2.2: Architecture Diagram of the System

 The architecture, shown in Figure 2.2, is an abstract

approach for serving dynamic request processing, by using

JSP. The system uses JSP to generate the presentation layer

and to perform process-intensive tasks. I choose Model-

View-Controller (MVC) as the predominant pattern for

system design. MVC separates the Model from the View

and the Controller, thus offering a way of increasing the

system modularity. Here, the JSP page acts as the controller

and is in charge of the request depending on the user‘s

actions. The JSP page forwards the request to the JavaBean

as model. Note particularly that there is no processing logic

within the JSP page itself; it is simply responsible for

retrieving any objects or beans that may have been

previously created, and extracting the dynamic content

from that server for insertion within static templates.

 As shown in the system architecture diagram in Figure

2.2, the system consists of the following subsystems:

 User Interface: The UI allows general users to interact

with the system through the web using an internet browser,

as well as authorized users to use the system directly

through their personal computer with different accessing

privileges through inputs (mouse clicks, keyboard strokes

etc.).

Browser

Web Server

Database

JDBC
Database connection

Dynamic Content

Java Beam

<<model>>

Server

Client Requests

Intercepted

<<controller>>

Presentation
JSP

Responses to
client only
<<view>>
Requests

Intercepted

Form

submit

Response

Request

Client Tier

 Client

Browser

Data Tier

 Data Server

SQL Server

Database

Middle Tier

Presentation

Server
 Web server

 Java platform

JSP

PAFGE

Application

Server
App server

 Java platform

 Logic

component

s

Syste

m
Syste

m
System

Syste

m
Syste

m
JavaBe

ans

Client Side Server Side

22 THE INTERNATIONAL JOURNAL OF ENGINEERING AND INFORMATION TECHNOLOGY (IJEIT), VOL.5, NO.1, 2018

 www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT008

 Web Server: This is the major part of the design, which is

to handle the user requests from user inputs. The JSP page

in Web server uses logical rules in JavaBean dynamic

component, to get the results. JSP Package (the

Controller) consists of sub-components for university

module and six users, as shown as in Figure 2.3.

Presentation JSP Pages (the View) generates the

presentation pages of the response from JavaBean, and send

them to clients for displaying in the user interface browser.

JavaBean: It is a dynamic component served as the

Model. It receives the information from Web server and

connects the database with the JDBC. It contains formatting

beans, command beans and application logic.

JDBC: It is the connection between JavaBean and

database.

 Database: To store the whole information of the system,

to receive the SQL queries and to give the query results out.

Figure 2.3: The Sub-Components in JSP Package

B. Deployment Diagram

 The deployment structure for the system is relatively

simple (Figure 2.4). The client Web Browser is on the

client PC. The connection between Web Browser and Web

Server is standard internet protocols, TCP/IP. It is important

to note that because Tomcat has a standalone HTTP server

built in; it must be run on a different port than Apache. The

system architecture of the system ensures that it is platform

independent.

Figure 2.4 The Deployment Diagram of the System

C. Object Model and Class Diagram

 The object model demonstrates the static structure of the

real-world events and organizes them into abstract

components. It describes real-world object classes and their

relationships to each other. The analysis of our object

model comes from the problem analysis in the SRD, our

knowledge of the application domain of student services,

which I am very familiar with, and finally the general

knowledge of the real world.

 Class diagram illustrates classes and the relationships

between them. The class diagrams of each component of

the system are divided into two sections. For the purpose of

simplifying the architectural design, i wrapped the user

interface (UI), WebServer, BeanTemplate, JDBC and

Database into the section of the major modules.

IV. MODULE INTERFACE SPECIFICATION

A. User Interface Subsystem

 The UI subsystem is to present the graphic user interface

to the system users. UI receives the input from users and

sends the user requests to the Web server. This subsystem

contains one class UI.

Figure 3.1 The Class Diagram of UI

B. Web server subsystem

 The Web server subsystem receives the client’s request,

compiles the request processing program, executes the

program, and returns the results to the client by calling user

interface’s transferMessage(). The Web server subsystem

contains one class WebServer. (Figure 3.2)

Figure 3.2 The Class Diagram of WebServer

 Client Web Browser

on pc

Internet Explorer

Web Server on

Operating System

Server : Database

<< TCP/IP >>

Student User Faculty

GDP

Monitor University Module

Administrator

Issa Manita/ Software Architecture and Desgin for Online Registration Syst 23

 www.ijeit.misuratau.edu.ly ISSN 2410-4256 Paper ID: IT008

C. JDBC subsystem

 The JDBC subsystem frees the logic programmer from

caring about handling the details of concrete databases.

This is a layer between the logic component and the

database. The logic programmer just declares a driver for

the target database, creates a SQL statement, passes it to

JDBC to execute it, and gets results. JDBC also provides

services to map the type in host program language with the

type in the concrete database, such as String type in Java is

mapping Char type in Oracle, and traverse the return

results.

JDBC subsystem contains one class JDBC. (Figure 3.3)

D. Database subsystem

 This subsystem stores all tables specified in the database

design. The SQL mechanism resides in the database

subsystem. This subsystem processes SQL statements

transferred from JDBC subsystem, interprets SQL

statements, executes SQL statements, and returns query

results to JDBC subsystem.
Database subsystem contains one class DB. (Figure 3.4)

E. JSP package

The JSP package contains seven components: PublicUser,

Student, Faculty, Graduate Program Director (GPD),

Administrator, Monitor and University Module.

components are connected only at the database level,

therefore each component can be developed separately.

V. CONCLUSION

 It has been shown that better visualization for software

life-cycle can be achieved using OOD approaches while

Clearance and common understanding between users,

customers, developer and designers can be achieved using

UML. The OOD techniques such as, prototyping have been

used in the development life-cycle of software for efficient

and faster system implementation. The use of OOD and

OOP can make the system more flexible and the change of

requirement can be handled easily. The use of iterative and

evolution models can save a considerable amount of time.

VI. FUTURE WORK

 Measuring the software quality based of the OOD and

OOP is an open area of research. Comparing the quality of

OOD and structural programs in term of speed and

performance might be trade-off. Testing in software

engineering can follow many paths and critical software

engineering need different testing techniques.

REFERENCES

[1] Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrion, “Fundamentals of

software engineering” ,2003.

[2] James A. O'Brien, McGraw-hill Irwin, “Introduction to information

systems for the e-business Enterprise,”2003.

[3] H. Poor, “An Introduction to Signal Detection and Estimation. New

York: Springer-Verlag”, 1985.

[4] John W.Satzinger, Southwest-Missouri state University, Robert B.

Jackson, Brigham Young University,Steohen D. Burd, University of

New Mexico, “System Analysis and Design, in a changing world ,

course Technology”, 2002.

[5] Stephen R. Schach, Vanderbilt University, “Introduction to Object-

Oriented Analysis and Design with UML and unified process”, 2004.

[6] Stephen R. Schach, Vanderbilt University, “Object-Oriented and

classical software engineering”, McGraw-hill Higher Education,

2005.

[7] Christopher fox, “Introduction to software engineering design

processes principles and patterns wit UML2” , Pearson Addison

Wesley, 2006.

[8] David Avison, Guy Fitzgerald, “Information system development

methodologies techniques and tools,” 4th edition, McGraw-hill

companies, 2006.

[9] Kai Qian, Chong-wei Xu, Xiang Fu, Jorge L. Díaz-Herrera, Lixin

Tao “Software Architecture and Design Illuminated”, 2010

Fig. 3.3 The Class Diagram of JDBC

Fig. 3.4 The Class Diagram of DB

