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Stability Analysis of Controlled DC Motor  
 

 

 

 
Abstract—Controlled dc motors are nonlinear systems, that 

show a nonlinear action in their operation including, sub-

harmonics and chaos when they work outside their design 

specifications. This nonlinearity forces the motor changing 

its normal operation to a random-like behaviour; In this 

paper, the nonlinear dynamics of DC motors are 

investigated. It is shown that the concept of the Poincaré 

map approach and the monodromy matrix method can be 

successfully applied to determine the stability of DC motors. 

 

Index Terms: DC motor, Monodromy matrix, nonlinear 

behaviour,  Poincaré map. 

 

I. INTRODUCTION 

 he performance of any system is generally evaluated 

by its steady-state and dynamic behaviour. When 

performing a steady-state analysis, the existence and 

location of periodic solutions are of concern and can be 

eased by deriving a discrete map that describes the 

dynamics of the system, and finding its fixed point. When 

performing a dynamic analysis however, stability and 

transient response are greatly focused on and can be 

studied using the closed loop eigenvalues of the system. 

    In this paper, the stability of the controlled DC motor 

will be studied using two different approaches. The first 

is the conventional Poincaré map approach for studying 

stability of any periodic system, based on: 

 Deriving the Poincaré map that describes the 

dynamics of the system and finding its fixed points. 

 Linearizing the map around the fixed points and 

finding the eigenvalues of the jacobian of this map. 

 If all eigenvalues have a magnitude less than unity, 

the system is stable, otherwise the system is 

unstable and nonlinear behaviour may exist. 

   The essence of this method lies in the capture of the 

dynamics in the small neighbourhood of a periodic orbit. 

One drawback of using this method in electrical circuits 

is that sometimes it is difficult to derive the Poincaré map 

of the system analytically because the equations of the 

system are transcendental. Therefore this map can only be 

calculated numerically [1-4].  

    The second method is based on deriving the 

monodromy matrix of the system, which is the 

fundamental solution matrix of the system for one 

complete cycle, and finding the Floquet multipliers. The 

Floquet multipliers are the eigenvalues of the monodromy 

matrix.  

   This paper is constructed as follows: first a general DC 

motor driven by a chopper circuit is modeled using a 

sampled data model. Based on this map, the existence and 

location of a periodic orbit are obtained. Next the 

nonlinear phenomena in the system including bifurcation 

and chaos are shown by simulation. Finally the stability 

analysis of the system is considered using the two 

methods mentioned above.  

II. TOPOLOGY AND OPERATION OF  

CONTROLLED DC MOTOR 

    A simplified block diagram of a speed  controller DC 

motor is shown in Figure 1. It consists of a feedback loop 

which observes the speed variation and adjusts the duty 

cycle d. The switch S is controlled by a comparator which 

compares a control signal Vcon with a periodic saw-tooth 

waveform Vramp. Switch S is open when Vcon > Vramp and is 

closed when Vcon < Vramp as shown in Figure 2. 
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Figure 1. DC Motor With Speed Control 

    The control signal Vcon is derived from the speed signal 

through a standard error amplifier. Using a simple 

proportional feedback controller, the control signal can be 

written as: 

    refpcon ωtωKtV                    (1) 
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where ωref is the reference speed, the desired speed, and 

Kp is the gain of the feedback amplifier. The ramp signal 

can be expressed as:   

  







 1mod

T

t
ΔVVtV Lramp             (2) 

where  LU VVΔV  , VL , VU are the lower and upper 

voltages of the ramp signal respectively and T is the 

period of one cycle.  
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Figure 2. Typical Operation Waveforms of  dc Motor with Speed Mode 

Control 

    The system is governed by two sets of linear 

differential equations related to the ON and OFF states of 

the controlled switch. The inductor current iL and the 

speed of the motor ω are taken as state variables.  

    The equations that represent the dynamics of the 

system in state space form are: 
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where   tt ,xf ,   tt ,xf  are the two smooth vector 

fields when the switch is ON and OFF respectively, 

defined as: 

    
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   TT
L xxi 21 x is the state vector, and 

 TL ETU   is the input vector. A and B are the system 

matrices that contain the system parameters, defined as: 
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   The switching instant occurs when the control signal is 

equal to the ramp signal; thus the switching condition 

 th ,x   is defined through feedback proportional control 

as: 

     0VωtωKtx,h ramprefp      (6) 

    In general, the circuit gives an average speed close to 

the desired value with a periodic ripple equal to the 

period of the driving clock as shown in Figure 3. The 

output speed shows a repetitive oscillation with a fixed 

speed ripple, also called period-1 operation. However, 

nonlinear phenomena such as bifurcation and chaos will 

appear when one of the circuit parameters is varied, the 

circuit parameters is chosen as  L=53.7e-3 H; R=2.8 ohm 

; Kp=0.7; B=0.000275; J=0.000557; Tl=0.38; ωref=100 

rad/sec ; Ke=0.1356;Kt=0.1324; [1-5]. 
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Figure 3. Simulation  Results, Period -1 Operation  

 

III. NONLINEAR PHENOMENA IN DC MOTOR 

    DC motors driven by a chopper circuit are nonlinear 

dynamic systems. The nonlinearities arise mainly due to 

switching power devices in control circuits, and 

nonlinearities in passive components such as inductors 

and capacitors [6]. Controlled DC motors exhibit various 

types of complex behaviour such as bifurcations and 

chaotic operation. These phenomena are called the 

nonlinear dynamics of the system [5-8]. In this section, 

nonlinear phenomena in a controlled DC motor are 

studied using the time waveforms of state variables, 

phase portraits and bifurcation diagrams. The input 

voltage is used as bifurcation parameters to investigate 

the changing behaviour of the system. Results are 

validated theoretically, showing good agreement with 

simulation.   

A.  Simulations results 

    In order to study the dynamics of the controlled 

system, Equation (3), which describes the dynamics of 

DC motors, is solved using MATLAB/ SIMULINK. The 
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switching instants are determined by comparing the ramp 

signal with the control signal. The input voltage was used 

as the bifurcation parameter and was varied from 50V to 

80V. The states were sampled at the start of each cycle of 

the ramp; thus a sampled data map was obtained. The 

sampled values of the speed (neglecting the initial 

transient) are plotted against the bifurcation parameter to 

obtain the bifurcation diagram, shown in Figure 4.  
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Figure 4. Bifurcation Diagram of the System as the Input Voltage is 

Changed 

    Normally, the controlled DC motor is designed to 

operate in period-1. This is when the input voltage is less 

than 55.6V for this specific system.  However, increasing 

the input voltage, a period-doubling bifurcation occurs at 

55.6V and the stability of the period-1 is lost to another 

periodic orbit, period-2.  

    This periodic solution continues until the input voltage 

is near 67V then it loses its stability again and bifurcates 

to period-4. As the input voltage increases further, a 

cascade of period- doubling takes place and at some point 

the system will enter into a chaotic region at an input 

voltage of around 70V. Above this value the system 

begins to operate in the chaotic region and exhibits some 

complex behaviour.  

    The speed and the inductor current waveforms in the 

time domain and the state space for an input voltage of 

50V are shown in Figures 5 and 6, respectively. The 

results indicate that the system is working in period-1 

operation at this operating point.    
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Figure 5. Period-1 Waveforms of the DC Motor, E = 50V 
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Figure 6. Phase Portrait of the System, E = 50V 

    System waveforms as the input voltage increases to 

60V are shown in Figures 7 and 8. It is obvious that the 

system is working in period-2 operation i.e. the states 

repeat themselves every two switching cycles. 
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Figure 7. Period-2 waveforms of the DC motor, E = 60V 
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Figure 8. Phase portrait of the system, E = 60V 

    As the input voltage increases further, to 70V, the 

system operates in a chaotic state as shown in Figure 9.    

The phase portrait at an input voltage of 70V shows a 

bounded solution with non-periodic motion (Figure 10).  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

Time (sec)

C
u

rr
e
n

t 
(A

m
p

)

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

100

120

140

160

Time(sec)

S
p

e
e
d

(r
a

d
/s

e
c

)

 

Figure 9. Chaotic waveforms of the DC motor, E = 70V 
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Figure 10. Phase portrait of the system, E = 70V 

 

B. Discrete maps and periodic solutions 

    In switching systems, the steady-state operation is a 

periodic orbit not an equilibrium point. Furthermore, this 

periodic orbit is non-smooth due to the switching action. 

One way to check the existence of the periodic orbit and 

find its location analytically is to derive a discrete map 

that describes the system [9-12]. In this section, the data 

sampled model in the form of a stroboscopic map is 

derived, where the state variables are sampled at the 

beginning of each cycle, to get a discrete model. 

Assuming the controlled DC motor operates in the 

nominal period-1 steady-state, in which there is only one 

switching in one clock cycle occurring at the time instant 

d′T as shown in Figure 11. 
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Figure 11. Typical Periodic Solution of the Controlled DC Motor 

    Since the controlled DC motor is a smooth piecewise 

linear system, the dynamics of the system before and 

after the switching can be described by a linear time 

invariant (LTI) ordinary differential equation 3. Therefore 

the solution of the system for each interval can be 

obtained directly by the exponential matrix method. 

    During the first interval, the ramp is crossed at t=d′T, 

the switch is OFF, and the solution of the system will be: 

       

     dTd

UeeTd
Td TdTd






OFFOFF

OFF
'

0

''

00,

d0' OFFOFF

ΓxΦ

Bxx
AA 

                 (7) 

where  0,OFF Td Φ , is the state transition matrix during 

the first interval.  

Likewise, during the second interval, the switch is ON 

and the state vector is given by: 
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where  TdT ,ONΦ , is the state transition matrix when 

the switch is ON. 

    Since the vector field of the system is piecewise linear 

(the solution of the system is continuous everywhere but 

only piecewise differentiable), the final state just before a 

switching instant can be taken as the initial state after the 

switching. This yields: 

            ddTdTdTT  ONOFFOFFON 00,, ΓΓxΦΦx

                                                                                        (9) 

    This is a sampled data map of the system, also known 

as the Poincaré map, and can be simplified to: 

       dTT  ΓxΦx 00,                            (10) 

where  

     0,,0, OFFON TdTdTT  ΦΦΦ  and  

       ddTdTd  ONOFFON , ΓΓΦΓ  

For a periodic solution    0xx T  must be satisfied thus 

the following expression for  0x  can be obtained: 

      dT 


ΓΦIx
1

0,0                              (11) 

    where I is the identity matrix of the same order as the 

system matrix AON,  and  0x  is the fixed point of the 

map. Since the nonlinear equation (11) is a function 

of d  , the equation can be solved with the switching 

equation   0),0( dh x  to obtain the duty cycle.   

   The switching equation   0),0( dh x  at the switching 

instant is given by:  
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dVV
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(12) 

    Substituting equation (11) into equation (12), a 

transcendental equation will be obtained which involves 

only one unknown, the switching instant:  
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    This transcendental nonlinear equation can be solved 

numerically with a method such as the Newton-Raphson 

method to obtain the duty ratio. Figure 12 shows the 

numerical values obtained for the duty cycle for different 

values of the input voltage.  

    Once the duty cycle is calculated, the fixed point of the 

sampled data map  0x  can be obtained using equation 

(11) which corresponds to the location of the periodic 

orbit of the continuous system.  
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Figure 12. Evaluation of the Duty-Cycle for Period-1 Operation 

 

IV. STABILITY ANALYSIS OF THE DC MOTOR 

USING POINCARE MAP METHOD 

    The stability of any periodic system exhibiting 

nonlinear behaviour such as the controlled DC motor is 

usually carried out as follows: 

 Deriving the discrete time map (Poincaré map) of the 

system. 

 Calculating the jacobian matrix of this map by 

linearizing around its fixed point. 

 Finally, finding the eigenvalues of the jacobian. The 

natural response of the system will decay to zero (the 

system will be stable) if and only if the eigenvalues 

of the jacobian have a magnitude less than unity, 

otherwise the system is unstable.  

    In a controlled DC motor this map can be established 

in a number of ways; one way is by sampling the state 

variables at the beginning of each switching period T as 

described in the previous section. 

A. Derivation of jacobian matrix of the DC motor 

    In section 3.b the Poincaré map of the DC motor has 

been derived (equation 10).  For simplicity, this can be 

written as: 

    dfT  ,0xx                   (14) 

    In order to check the stability of the system, we first 

need to linearize this map around its fixed point  0x  to 

obtain the jacobian matrix
 
 0x

x



 T
. This can be achieved 

by differentiating equation (14) with respect to  0x  and 

using the series rule: 
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To calculate
 0x

d
, differentiation of the switching 

manifold   dh ,0x  with respect to  0x  is needed; this 

yields: 
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    By substituting equation ( 16) into (15), the following 

expression of the jacobian matrix is obtained: 
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    This is a general form of the jacobian matrix for any 

switching systems. By differentiating the Poincaré map of 

the controlled DC motor equation (10) and (12) with 

respect to  0x  and d  , the final expression for the 

jacobian of the voltage controlled DC motor is obtained.  
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B.   Calculating the eigenvalues of the jacobian 

matrix 

    In order to calculate the jacobian matrix and hence to 

check the stability of the system, one needs to find the 

location of the periodic orbit and the switching instant. 

This can be achieved numerically by solving the discrete 

map of the system with the switching equation to 

generate a nonlinear equation (13) whose roots will 

define the switching instant. Once the switching instant 

has been identified, utilizing the fact that the system is 

LTI before and after the switching, it is possible to locate 

the limit cycle. Once these values are found, the jacobian 

matrix (18) can be expressed as a function of the input 

voltage and its eigenvalues can be calculated. Figure 13 

shows the evaluation of the eigenvalues of the jacobian 

matrix for different values of the input voltage, clearly 

indicating the loss of stability through a smooth period-

doubling bifurcation around an input voltage of 56V as 

demonstrated by the previous simulation and 

experimental results. 
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Figure 13. Evaluation of  the Eigenvalues of  the Iacobian  Matrix as the 

Input Voltage Changes from 50V to 60V 

C. Stability Analysis of the controlled DC motor 

Using the Monodromy Matrix Method 

    In this section an alternative approach for determining 

the stability of any switching systems is proposed based 

on linearizing the system around the whole periodic orbit. 

The new method requires the calculation of the 

monodromy matrix of the controlled DC motor. The 

monodromy matrix of any switching system is the 

product of the state transition matrices before, during and 

after the switching for one complete cycle.  

D. Derivation of the monodromy matrix of the DC 

motor 

   The controlled DC motor is a nonlinear system that 

represents different circuit topologies within one 

switching cycle. For the continuous conduction mode, 

there are two topologies. In each topology, the system can 

be described by linear state equations. However, for a 

complete switching cycle, the system becomes piecewise 

linear and the solution is not defined at the switching 

instant. The solution of such a system can be defined on 

the basis of differential inclusions using Filippov’s 

concept [13-15]. 

    To define the solution of a system while it is on the 

switching manifold, Filippov suggested that the vector 

field at the switching instant will not be a single valued 

function but a set valued function whose limits are the 

values of the vector fields before and after the switching. 

As a result the original piecewise equation (4) that 

describes the dynamics of the DC motor has to be 

extended into a differential inclusion F (x, t) as: 
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where )),(( ttxf and )),(( ttxf are the two smooth 

vector fields before and after the switching. They are 

defined as: 
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    It is obvious from equations (20) and (21) that there is 

a discontinuity when the main switching element passes 

from ON state to OFF state, since )),(()),(( tttt xfxf   . 

    The two dimensional state space is now divided into 

three parts V-, V+ and Σ as shown in Figure 14 where V- is 

the time interval during which the switch is OFF, V+ is 

the time interval during which the switch is ON and Σ is 

the switching instant.  
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Figure 14. Transversal Intersections in the Orbit of the Controlled DC 

Motor 

The smallest closed convex set is defined as:  
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The normal to the switching manifold n is given by: 
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Therefore the projections of  f  and f on the hyper-

surface Σ are given by: 
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    The extension of a discontinuous system (4) into a 

convex differential inclusion (14) is known as Filippov’s 

convex method. The solution is unique for every initial 

condition, if it crosses the hyper-surface transversally and 

spends almost zero time on the switching manifold.  

A necessary condition for a transversal intersection at Σ is 

[15]:  
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 Therefore the solution is unique as shown in Figure 15. 

    The period-1 limit cycle of the system, given in Figure 

15, shows that the trajectory crosses the switching 

manifold twice, at d′T and T. Therefore the fundamental 

solution matrix for one complete cycle, the monodromy 

matrix, is given by: 

  )0,()(),()(0, OFF1ON2 TdTdTdTTT  ΦSΦSM      (27) 

    where ),(ON dTTΦ , )0,(OFF dTΦ  are the state 

transition matrices during the ON and OFF intervals, 

respectively, and they are calculated by the exponential 

matrix. 
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    S1 and S2 are the state transition matrices during 

switching, also called the saltation matrices, and they are 

calculated by the following formula [1, 13-15]: 
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    where t  is the switching time (the time at which the 

solution hits the switching manifold).  
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Figure 15. Period-1 Limit Cycle of the DC Motor 

    The switching manifold is defined by a scalar indicator 

function   0, th x , thus the derivative of   th ,x  with 

respect to t for period-1 operation ),0( Tt is: 

TK
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th
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
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 ),(x
                            (29) 

    Substituting equations (23) – (29) into equation (28) at 

the switching instant Tdt  , the saltation matrix S1 can 

be calculated: 
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    To calculate S2, the time derivative of the switching 

manifold at Tt  is needed. Since the switching 

manifold is discontinuous (with respect to time) at this 

point the time derivative will be infinite. Therefore the 

saltation matrix at this point is the identity matrix.  

    Knowing S1 and S2, it is possible to calculate the 

eigenvalues of the monodromy matrix which, for a 

period-1 response, must have amplitudes less than 1.The 

total fundamental solution matrix over one complete 

cycle of the buck converter is: 
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    The stability of the periodic orbit can be determined by 

obtaining the Floquet multipliers which are the 

eigenvalues of the monodromy matrix. 

E. Calculating the Floquet multipliers 

    The stability of the system can be determined by 

calculating the Floquet multipliers which are the 

eigenvalues of the fundamental solution matrix  0,TM . 

Common problems that have to be addressed here are the 

location of the limit cycle and the times at which the 

switching take place. This can be achieved numerically 

by deriving a nonlinear function equation 13 whose root 

will define the switching instant. Once the switching 

instants have been identified, utilizing the fact that the 

system is LTI before and after the switching, it is possible 

to locate the limit cycle. Once these values are found, the 

monodromy matrix can be expressed as a function of the 

input voltage using equation 31. The computed loci of the 

eigenvalues with varying input voltage are shown in 

Figure 16. The figure shows that the system loses its 

stability through a smooth period-doubling bifurcation at 

an input voltage of around 55.6V. This result is in perfect 

agreement with the previous analytical and simulation 

results. 
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Figure 16. Loci of the Eigenvalues of the Monodromy Matrix for 

Different Input Voltages 

V. CONCLUSION 

    This paper focused on the stability analysis of the 

periodic orbit of the DC motor with speed mode control 

operating in continuous conduction mode. The existence 

and location of the periodic solution of the system has 

been proven analytically in this paper. It was shown that 

the system exhibits nonlinear phenomena, including 
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bifurcation and chaos as the input voltage or the control 

parameter is changed. The nonlinearities have been 

shown analytically, by simulation validated. The stability 

analysis of the speed controlled DC motor has been 

considered using two approaches; the first is the Poincaré 

map method which is the conventional method for 

studying the stability of any periodic orbits. The second 

approach is based on deriving the state transition matrices 

before, during and after the switching takes place for one 

switching cycle (the monodromy matrix). Unsurprisingly, 

both methods give the same results; however the stability 

analysis using the monodromy matrix method was easier 

to implement when compared with the Poincaré map 

method. This represents a first step towards developing a 

technique for controlling bifurcations in controlled DC 

motors which will be used in future work to stabilize the 

nonlinear behaviour in these systems 
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