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Abstract - This work focuses on describing the dynamic 

behavior of distributed parameter systems by means of 

spatial discretization. In control and system theory 

literature, distributed parameter systems are simply the 

systems that are represented mathematically by partial 

differential equations. Thus, the key notion of this work is 

representing the dynamic behavior of distributed parameter 

systems by means of spatial discretization of the dynamics of 

the system. Spatial discretization, or lumping, aims to 

transform a partial differential equation to a set of ordinary 

differential equations. The proposed concept approximates 

the dynamic behavior of the physical system by lumping it 

to small tranches and then using the finite differences 

method to interconnect formally these lumps and simulates 

the dynamic of the overall system. 

 

Index Terms - Dynamic of distributed parameter systems, 

lumping and discretization, simulation, finite differences. 

 

I. INTRODUCTION 

The description of the dynamic behavior of many 

problems that appears in engineering, physics, chemistry, 

electricity or industrial process generally leads to 

mathematical models contains systems of Partial 

Differential Equations (PDEs) [1, 2, 3, 4, 5]. In control 

and system theory literature, such systems are called 

distributed parameter systems or infinite dimensional 

systems, contrasted to localized parameter systems or 

finite dimensional systems which generally modeled by 

ordinary differential equations. Therefore, mathematical 

modeling, analysis, simulation and control of distributed 

parameter systems has an accordingly many traditions 

and studies varies from theoretical to applied, numerical, 

methods [1, 3, 5, 6]. 

The purpose of this work is to practically represent and 

approximate the dynamic behavior of distributed 

parameter systems by means of lumping the system and 

representing it as small parts, see also [6, 7]. Considering 

each lump as a localized parameter system and then 

expressing the relations and interconnections between all 

these parts will lead to a system of ordinary differential 

equations.  

 

 

 

 

Solving the lumped system will approximates and 

gives the solution of the original system’s model; partial 

differential equations (PDEs). Transforming the system 

from infinite dimensional to finite dimensional will 

enable us to resolve the system using conventional 

numerical methods and simplifies the system analysis, 

simulation and control. 

A particular case of distributed parameter systems is 

the gas transportation process which generally led by two 

physical phenomena; convention and diffusion. The 

manipulation of the transportation process in one 

dimensional spatial domain is taken as an example in this 

work and also simulation results are presented, see also 

[2, 3, 5].  

In brief, presenting a theoretical and practical results 

about modeling and simulation of distributed parameter 

systems is the major aim of this work. 

A. Distributed parameter systems 

The term distributed parameter systems comes from 

the fact that the state variables of the modeled system are 

distributed and defined overall a spatial domain Ω, of the 

space 
nR (for 3,2,1n ), in which occurs the phenomena 

modeled by partial differential equations. Consequently, 

all the state variables of the system are functions of time 

(t) and space (Ω). As we mentioned earlier, the 

description of the dynamic behavior of many problems 

that appears in engineering applications, physics, 

chemistry, electricity or industrial process generally leads 

to mathematical models contains systems of Partial 

Differential Equations (PDEs). Therefore, studying these 

models is of major interest of so many engineering 

applications. 

 
 

Boundary, ∂Ω, relating the domain to the 
surrounding environment 
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Three dimensional spatial domain Ω, where the 
physical parameters are defined. 

 

Figure 1. A spatial domain Ω, with its boundary ∂Ω granting the 

connection with the external environment. 
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Considering the spatial domain Ω shown in Figure. 1, 

the boundaries of the spatial domain Ω are mentioned by 

∂Ω. The variables of the modeled phenomena are defined 

on Ω and it can be connected with external sources or 

other physical phenomena through the boundaries ∂Ω. In 

brief, the system can interact with its surrounding 

environment through its boundaries ∂Ω  and normally the 

conditions of the variables at the boundaries ∂Ω will have 

an effect on the dynamic behavior of the variables in the 

domain Ω. 
 

B. Mass transfer phenomena 

One of the most well-known distributed parameter 

phenomenon described by partial differential equations is 

the mass transfer phenomenon [2, 8]. Considering a gas 

mixture of k species flows in the spatial domain Ω, the 

mathematical model describing the dynamics of this 

system on overall the spatial domain Ω is given for each 

spices as [2]: 
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
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                                                           (1) 

 

where iC is the molar concentration of the species i  and 

iF  is the molar flow of the species i [2]. In such 

processes, the molar flow is generally driven by two 

phenomena; it is composed of a convective flow iCF and 

diffusive flow iDF . Hence, the molar flow of species i  

can be represented as : 

 

iDiCi FFF                                                             (2) 

 

For simplifying the mathematical manipulations of the 

model, let us consider a symmetry of the physical 

variables according to the coordinate axes y and z and 

consider only the changes related to the coordinate x. 

Therefore, the convective molar flow of the species i can 

be given as : 

 

iiC CvF                                                                     (3)  

 

where v  is the velocity that drive the convective term 

according to the coordinate x. The diffusive molar flow of 

the species i can be given as : 
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where iD  is the diffusion parameter representing the 

resistance term and characterizing the diffusive term of 

the flow. Substituting eq. (3) and eq. (4) in eq. (2) yields : 
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and then substituting eq.(5) in eq. (1) yields : 
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Recalling the assumption of symmetry according to the 

coordinates y and z, and considering the boundary 

conditions at the two edges of the coordinate x, see also 

[2, 8], the mathematical model of the system can be 

represented as : 
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where 
ininin FvC  is the molar flux of the spices i at the 

input boundary of the system. From the model given in 

eq. (7), it is clear that the system is described by a set of 

partial differential equations and its variables are define 

on the spatial domain Ω reduced to 
1R and with a 

coordinates axis x , with x varies from 0 to L . 

II. CONCEPT OF LUMMPING 

The main idea behind the lumping is to approximate 

the spatial domain as a sum of n smaller parts, or 

tranches, see Fig. 2. As a direct consequence, the 

variables of the distributed parameter system will be 

approximated by lumped ones defined on each part, or 

tranche. Variables in each tranche are intended to interact 

with its equivalent variables in the neighbor tranches. 

This interaction can take place through the boundaries of 

the tranche, and it can represent and approximate the 

dynamic on the specified tranche. Finally, the overall 

dynamic of the distributed parameter system can be 

approximated by considering the dynamic of all tranches. 
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Figure 2. Concept of a lumped distributed parameter system. 

 

As shown in Figure. 2, the spatial domain is lumped to 

n  tranches with width h , consequently )/( nLh  . This 
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lumping approach, Figure. 2, is also often used in system 

and control engineering practice, where the distributed 

parameter systems are approximated by lumped ones. 

Consequently, the control community has made many 

efforts to extend certain concepts known from finite-

dimensional control theory to the distributed parameter 

case [1, 3, 6, 7]. 

III. MATHEMATICAL BASIS 

According to the mathematical model and its related 

boundary conditions given in eq. (7), the first step 

towards a finite dimensional model is to discretize the 

partial derivatives according to the spatial variable x . 

This can be achieved using the method of finite 

differences. The finite difference discretization scheme is 

one of the simplest forms of discretizing and representing 

the spatial derivatives. The derivatives of the partial 

differential equation are approximated by linear 

combinations of function values at the different parts, or 

tranches, of the spatial domain. Arbitrary order 

approximations can be derived from a Taylor series 

expansion, and according to the model of eq. (7) the first 

and second derivatives can be given as : 
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where ( nj ,......,2,1 ) is the tranches index. 

 

According to the expressions of eq. (7), the dynamics 

related to the convection phenomenon can be expressed 

as : 

 

inCCC CBCAC                                                       (10)  

 

Where the convection matrix
CA  is given as: 
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and the input matrix
CB  related to the convection 

phenomenon is given as: 
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In the same way, the dynamics related to the diffusion 

phenomenon can be expressed as : 

 

inDDD CBCAC                                                       (13)  

 

Where the convection matrix
DA  is given as: 
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and the input matrix
DB  related to the diffusion 

phenomenon is given as:  
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Consequently,  and by combining the eq. (10) and eq. 

(13) to represent the complete dynamics of the system. 

The set of differential equations representing the finite 

dimensional model can be given as:  

 

inCBCAC                                                      (16)  
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and 
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where A is the overall system matrix and B is the overall 

input matrix.  

IV. SIMULATION RESULTS 

In order to simulate the distributed parameter system 

defined in eq. (7) with taking in consideration its related 

boundary conditions. The spatial domain, on which the 

system is defined, is discretized in ten equal lumps, 

10n  in Fig. 2. The discretized model, infinite 

dimensional model, will take the form defined by eq. (16) 

where the system matrix A will be a )1010(   matrix and 

the input matrix B is )110(  matrix. Considering the 

physical parameters given in [8], where )(5.0 mL  ,  

)/(02.0 smv  , )/(108.2 25 smDi

 . Consequently, 

)(05.0/ mnLh  . According to these physical 

parameters, the system matrices will be : 
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and 
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The simulated experiment is the response of a 

transportation column to a steam of a gaseous oxygen; 

2O . The process is considered to be initially at 

equilibrium for a very low concentration of 
2O all along 

the profile (which means in each tranche in the simulated 

column). At )0( t , a step change of a high 

concentration of 
2O is given at the input of the 

transportation column. The simulation have been taken 

for 50 seconds and the results are given in Fig. 3. Fig. 3 

shows clearly the concentration profile in the ten parts, 

tranches, of the spatial domain representing the 

transportation column. Note that, the first curve represent 

the concentration in the first tranche, the second for the 

second tranche and so on. 

 

 

Figure 3. Simulation results. 

V. CONCLUSION 

This paper discussed the representation of the dynamic 

behavior of distributed parameter systems and focuses on 

lumping the spatial domain on which the system is 

defined to several parts, also called tranches. In order to 

illustrate the concept, a model of transportation column 

has been derived from the two main physical phenomena 

related to the transportation process; the diffusion and the 

convection. After discretizing and lumping the spatial 

domain, all the spatial derivatives have been 

approximated by means of Taylor expansion. The first 

consequence of the lumping approach is the 

transformation of the infinite dimensional model to a 

finite n-dimensional model. The lumped model is finally 

simulated. The methodology presented exhibits some 

interesting features of transforming the infinite 

dimensional distributed parameter model to a finite 

dimensional model, and the Taylor expansion conserves 

the linear properties of the spatial derivatives. 

 

REFERENCES 

[1] A. Baaiu, F. Couenne, L. Lefevre, Y. Le Gorrec, M. Tayakout, 
“Structure-preserving infinite dimensional model reduction: 

Application to adsorption processes” Journal of Process Control, 
vol. 19, Issue 3, pp. 394-404, March 2009. 

[2] D. Ruthven, Principles of adsorption and adsorption processes, 1st 

Edition. New York, U. S. A. John Wiley and sons, 1994. 
[3] V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx,  

Modeling and Control of Complex Physical Systems, The Port-
Hamiltonian Approach, 1st Edition, Springer-Verlag Berlin 

Heidelberg, 2009. 

[4] E. Kreyszig,  Advanced Engineering Mathematics, Third Edition, 
John-Wiley & sons, Inc, 1992. 

[5] D. Coughanowr,  Process systems Analysis and Control, Second 
Edition, McGraw-Hill, Inc, 1991. 

 

 

(19) 

(20) 



67               THE INTERNATIONAL JOURNAL OF ENGINEERING AND INFORMATION TECHNOLOGY (IJEIT), VOL. 2, NO. 2, JUNE 2016                            

 

  www.ijeit.misuratau.edu.ly                                                             ISSN 2410-4256                                                                              Paper ID: EN019 

 

[6] A. Baaiu, F. Couenne, L. Lefevre, and Y. Le Gorrec, “Energy-
preserving method for spatial discretization: application to an 

adsorption column” Computer Aided Chemical Engineering, vol. 

25, pp. 727-732, 2008. 
[7] A. Baaiu, F. Couenne, L. Lefevre, Y. Legorrec and M. Tayakout, 

“On Energy based discretization of an adsorption column”, in 
Proc. ADCHEM (International Symposium on Advanced Control 

of Chemical Processes), Brazil, April 2006, pp. 8-16. 

[8] A. Baaiu, “Hamiltonian approach for modeling, estimation and 
control of a separation process” Ph.D. dissertation, N° d’order 

073-2007., Lyon-1 University, Lyon, France, June 2007. 
 

 

BIOGRAPHIES 

Ahmed Baaiu was born in Misurata, Libya, on 

March 1976. In 1998 he received his B. Sc from 

the Department of Electrical and Computer 
Engineering, Faculty of Engineering, NASSER 

university, Alkhoms, Libya. His B. Sc project was 
focused on the Analysis of control systems with a 

delay time effects. In 2003 he received his M.Sc. 

from Lyon 1 university, Lyon, France. His master subject was entitled 
"Studying a reference model behavior using the Ramadge and Whonam 

theory for the synthesis of control laws for complex discrete events 
systems". In 2007 he received his Ph.D. in automatic control (section 

61: computer and control) from Lyon 1 university, Lyon, France. His 

Ph.D. subject was entitled "Hamiltonian Approach for modelling, 
estimation and control of a separation process". On September 2007 he 

appointed as a lecturer at the department of Electrical and Electronic 
Engineering at the Faculty of Engineering at Misurata University, 

Misurata, Libya. From February 2011 he promoted to be an Assistant 

Professor at Misurata University, Misurata, Libya. 
 

 
Ismail Albatrookh was born in Misurata, Libya, 

on 6th of June1977. In 2000 he received his B. Sc 

from the Department of Electrical Engineering, 
Faculty of Engineering, OMAR ALMUKHTAR 

university, ELBEIDA, Libya. His B. Sc project was 
focused on study simplified model of A direct 

sequence spread spectrum communication system. 

In 2008 he received his M.Sc. from Tripoli 
university, Tripoli, Libya. His master subject was entitled“Using 

Artificial Neural Network to Control an Autonomous Underwater 
Vehicle”. On September 2009 he appointed as a lecturer Assistant at the 

department of Electrical and Electronic Engineering at the Faculty of 

Engineering at Misurata University, Misurata, Libya. From August 
2013 he promoted to be an Lecturer at Misurata University, Misurata, 

Libya. 


