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Abstract—In this paper, the authors study the influence the 

form of the smooth unloading-reloading function on the 

nonlinear solution characteristics of the recently developed 

smooth unloading-reloading (SUR) approach for nonlinear 

finite element simulation of quasi-brittle materials. The 

SUR method uses a target function and a smooth unloading-

reloading function to compute an approximate tangent 

matrix with an incremental-iterative Newtown type solution 

scheme. The smooth unloading-reloading function has two 

main parameters 
pa andν  which affect the form of the SUR 

function. The study is illustrated using different values of 

the two main parameters of the SUR curve. A Mathcad code 

has been written to carry out the nonlinear finite element 

analysis of the numerical example presented in this paper. 

 

Index Terms: Nonlinear finite element analysis, smooth 

unloading-reloading method, quasi-brittle materials, 

damage model. 

I. INTRODUCTION 

he development, growth and coalescence of micro-

cracks in quasi-brittle materials, such as concrete, 

induce degradation in mechanical performance in both 

strength and stiffness of the material when loaded beyond 

its elastic limit. The degradation is reflected 

macroscopically as strain-softening behavior. This 

behavior gives rise to the issue of stability and 

convergence difficulties. Therefore, the nonlinear finite 

element analysis of such materials is still a truly 

numerical challenging undertaking [1, 2]. 

The nonlinear systems of equations resulting from the 

finite element simulation of quasi-brittle structures are 

frequently solved using incremental-iterative solution 

schemes based on Newton-Raphson algorithm. However, 

existing Newton-based incremental-iterative schemes, 

such as standard Newton-Raphson, modified Newton-

Raphson, Quasi-Newton-Raphson, line search algorithms 

and arc-length procedures, often suffer from stability and 

convergence difficulties and thus can be inappropriate for 

the numerical simulation of many quasi-brittle materials 

problems [3]. 

None of the aforementioned incremental-iterative 

solution schemes based on Newton-Raphson are 

completely robust, nor do they fully resolve all the 

stability and convergence difficulties encountered when 

analysing quasi-brittle structures. In an attempt to avoid 

such difficulties, a number of researchers have developed 

solution procedures that either avoid (or limit) the use of 

iterations. These methods include ‘implicit-explicit’ 

approach of Oliver et al [4], ‘modified implicit-explicit’ 

method [5] and ‘Sequentially Linear Approach’ (SLA) 

[6-9]. 

Although there are considerable benefits to using these 

non-iterative approaches, they can result in non-smooth 

responses, and would require further development if they 

are to be applicable to problems that include multiple 

materials and several non-linear processes [10]. 

Recently, Alnaas and Jefferson [11] developed a novel 

incremental-iterative numerical approach, called smooth 

unloading-reloading ‘SUR’, for the nonlinear finite 

element analysis of quasi-brittle structures. This method 

improves the robustness and convergence properties of 

solutions to fracture problems in quasi-brittle materials. 

The SUR approach uses a target function and a smooth 

unloading-reloading function to compute an approximate 

tangent matrix in an incremental-iterative Newton type 

solution procedure. The target function gives the 

equivalent uniaxial stress, which in 1D is directly 

proportional to the maximum strain experienced and the 

smooth unloading-reloading function has a small positive 

gradient at its intersection with the target softening curve. 

A key feature of the SUR method is that it is always uses 

a positive definite stiffness matrix and never resulted in a 

breakdown of the nonlinear solution procedure. See 

section 3 for more details of the SUR method.  

In this paper, two main parameters ν  and pa  of the 

SUR function, which affect the form of the SUR 

function, are investigated and their effects on the on the 

convergence characteristics of the developed smooth 

unloading-reloading method are explored. 

T 
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II. CONSTITUTIVE  MODEL 

In this study, the isotropic damage model of Oliver et 

al. [12] is employed. This isotropic damage model is 

based on the simplifying assumption that stiffness 

degradation is isotropic and the loss of material stiffness 

is characterised by a scalar damage variable (ω [0, 1]), 

in which ω =0 for undamaged material and ω =1 for 

fully damaged materials. The constitutive equation for the 

isotropic damage model is expressed as: 
 

  εDσ 0 :ω1
 

(1) 
 

The where σ  and ε  are the stress and strain tensors 

respectively; 
0D  donates the elastic stiffness of the 

undamaged material and the damage variable ω is a 

function of a damage evolution parameter pr . The 

effective stress is defined as follows: 
 

εDσ 00 :
       (2) 

effr  is a scalar measure of the current ‘effective’ stress 

and is computed by: 
 


 000 σDσ ::

1

effr
 

      (3) 

 

where  

0σ  denotes the positive part of the effective 

stress tensor, and is given by the following form: 
  







3

1i

iii
pp σσ 00

 

(4) 

where 
i0σ  stands for the positive part of the ith 

principal effective stress 
i0σ , 

ip  represents the ith stress 

eigenvector. Symbol   denotes the tensor product, and 

symbol x is the Macaulay bracket, in which 

000  xifxxifxx ,;,
 

 

The damage loading function is expressed in terms of 

the effective stress and the scalar damage evolution 

parameter ( pr ). The damage loading function is given by: 

peffpeff rrr,rf )(
 

(5) 

 

pr  is a measure of the largest effective stress reached 

in the history of the material up to the current state. 

Initially, 
pr  is equal to kr , which is the damage evolution 

parameter at the peak of the uniaxial stress curve  and is 

related to the peak stress tf of the material in uniaxial 

tension. The expression used to compute kr  is described 

in section 3. 

Damage evolution is controlled via the standard Kuhn-

Tucker loading/unloading conditions, as follows: 
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The constitutive tensor takes the form: 
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III. THE  SUR  METHOD 

     The smooth unloading-reloading approach uses a 

target function )( ps rf  and a smooth unloading-

reloading function ), effpp r(rσ , as illustrated in Figure 

1. It may be seen that the SUR function has two parts; 

(i) when
ppeff rar  , for which linear unloading-

reloading with a slope Eω- pf )(1  is assumed, and (ii) 

when 
ppeff rar  , for which nonlinear unloading-

reloading is assumed, according to the 

function ), effpp r(rσ .  
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Figure 1: Target and unloading-reloading damage evolution  
functions  
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(9) 

 

where effr is the effective damage parameter, E is 

Young’s modulus, tf  is the tensile strength, 0r  is the 

effective end of the softening curve, kr is the damage 

evolution parameter at the peak of the uniaxial stress 

curve and c1=5 [11]. 

The two main input parameters of the SUR 

function pa  and ν  are studied in this paper to 

examine the effect of varying these parameters on the 

numerical performance of the SUR model. It should 

be mentioned that Ref [11] used the values of 0.70 

and 0.75 for the constants pa  and ν , respectively.  

    The SUR function is tangential to the secant curve 

with modulus [(1-pf) E], and pσ  depends upon the 
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asymptotic stress function kσ  , which is defined as 

follows; 
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noting that )r(f ks = tf  , and that the expression 

ka is defined in equation (11) below; 
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The damage parameter that controls the linear part 

of the SUR function is computed as: 
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and the damage parameter for the SUR  function is 

given by: 
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(13) 

The introduction of the SUR function results in 

changes to two of the model equations presented in 

equations 1 and 7; these being the overall constitutive 

equation (14) and the expression for the tangent D 

matrix (15), as follows: 

 

  εDσ 0 :r,rω1 effpp )(
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(15) 

 

The overall stress-strain relationship (14) now 

depends on pω , rather than ω , which in turn is 

governed by the value of SUR function pσ . The 

new form of the matrix tanD  is evaluated using the 

SUR function and therefore is always positive 

definite. See references [10] and [11] for more details 

of the SUR method.   

 

 

 

                       

IV. NUMERICAL EXAMPLE 

A one dimensional bar example shown in Figure 2 

is used in the present study. The purpose of this study 

is not to examine the robustness of the SUR method, 

but rather to explore the effect of varying the two 

main parameters of SUR function ( pa  and ν ) on the 

convergence characteristics of the new SUR 

approach.  

Eight cases with different values of pa  and ν  for 

the SUR function were considered in the present 

study, as shown in table 1. It should be mentioned that 

more cases (with different parameters of pa  and ν ) of 

the SUR model can be studied; however, the authors' 

experience of the SUR model is that the cases given 

in table 1 are the most recommended cases that 

should be used for the SUR method. 

 

Table 1:.Different values of pa
 andν  for the sur function 

 

Case No. 
pa  

ν  

Case 1 0.60 0.65 

Case 2 0.65 0.70 

Case 3 0.70 0.75 

Case 4 0.75 0.80 

Case 5 0.60 0.75 

Case 6 0.70 0.80 

Case 7 0.60 0.80 

Case 8 0.80 1.0 

 

 

 
Figure 2: One-Dimensional bar problem 

 

The 1D bar problem considered in this paper was 

fixed at one end and loaded by prescribed 

displacement of 0.2 mm at the other end.  The 

prescribed displacement was applied evenly over 100 

increments in the analysis. The 1D bar was divided 

into 3 linear elements of equal length, with the middle 

element being assigned a small amount of initial 

damage such that damage only occurred in this central 

element.    

The material properties used for the analysis were: 

Young’s modulus (E=20000 MPa), Poisson’s ratio 

(=0.2), tensile strength (ft=2.5 MPa) and the fracture 

energy (Gf= 0.1 N/mm).  

A convergence tolerance of 10-6, based on L2 

norms of iterative displacement and out of balance 

force was used in the analysis of this example. 
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           Figure 3: Displacement-stress responses of the SUR solution 

with different cases of SUR function 

 

The resulting stress-displacement responses, from 

the analyses using eight different cases of SUR 

function parameters ( pa  and ν ), are shown in Figure 

3 and, as expected, the stress-displacement results 

from the various cases are indistinguishable from 

each other. Indeed, the form of the unloading-

reloading curve would not be expected to have a 

major influence on the overall predicted stress-

displacement response but predominantly affect the 

convergence characteristic of the solution, as can be 

seen in Figures 3 and 4. 

 

 
 

 Figure 4: Total number of iterations that are needed for each case 
of the SUR solution 

 

The convergence performance of the SUR method 

with different parameters ( pa  and ν ) to form the SUR 

function is illustrated in Figure 4 by showing the total 

number of iterations required for completing the SUR 

solution for each case. Results showed that cases (2, 3 

and 4) achieved converged solutions in fewer 

iterations than to the rest of cases (1, 5, 6, 7 and 8), as 

it can be clearly seen from the bar charts in Figure 4. 

Thus, for the SUR function, using the parameters of 

cases 2, 3 and 4 can give a noticeable reduction in the 

total number of iterations relative to those required by 

parameters of cases 1, 5, 6, 7 and 8. 

The better performance of the SUR solution using 

the parameters of cases 2, 3 and 4 is attributed to the 

fact that the SUR curve of these cases has a much 

smaller gradient at the intersection with the target 

curve than does the SUR curve of cases 1, 5, 6, 7 and 

8. This means that the ‘tangent matrix’ used in cases 

2, 3 and 4 solutions was closer to the true (negative) 

tangent and therefore resulted in less drift from the 

target solution in each iteration than the solutions of 

cases 1, 5, 6, 7 and 8. studied case has different form 

of the SUR function. 

 

 
 

  Figure 5: Convergence history of SUR solutions with different 

forms of the SUR function 

 

  The convergence history for each studied case of the 

SUR solution is plotted in Figure 5.  The information 

provided in Figure 5 includes the out of balance force 

norm at the end of each load increment for the eight 

cases, in which each studied case has different form 

of the SUR function. 

V.  CONCLUSIONS 

 

Effect the form of the SUR function on the 

convergence performance of the recently developed 

smooth unloading-reloading (SUR) method is studied 

by using different values of the two main parameters 

( pa  and ν ) of the SUR curve. The convergence 

characteristics are illustrated by showing the total 

number of iterations required to achieve convergence 

for the SUR solution. The following conclusions can 

be drawn from this work: 

 

 The form of the SUR curve does not affect the 

overall predicted structural response, but only 

affect the convergence characteristics of the 

SUR solution, with SUR functions that have 

small gradients at the intersection with the target 

softening curve performing best. 

 For the SUR function, using the parameters of 

case 2 [ pa  =0.65 and ν  =0.70 ], case 3 [ pa  

=0.70 and ν  =0.75 ] or case 4 [ pa  =0.75 and ν  

=0.80 ] provide the best efficiency for the SUR 

method as they result in substantial savings in 

terms of the total number of iterations required 

for a complete solution, relative to any other 

suggested parameters.  

 The SUR method was robust and never resulted 

in a breakdown of the nonlinear solution 

procedure.   
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