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Abstract— The Continuous Stirred Tank Reactor (CSTR) is 

a common type of industrial equipment used in chemical 

processes with second-order nonlinear dynamics. CSTR is a 

nonlinear and linked nature makes it challenging to develop 

a robust control with a bigger operating zone. In the process 

industry, a CSTR is a crucial component. It serves as a 

foundation for studying and controlling other chemical 

reactors. Good state estimation and disturbance rejection 

are required in industrial processes. The most important 

characteristic for CSTR operation is temperature. The 

behavior is obtained by steady-state and dynamic analysis of 

the model which is usually represented by a set of 

differential equations. An event-based Neural network, 

Model Predictive Control (MPC), and Model Reference 

Adaptive Control (MRAC) controller are presented in this 

work to provide robustness to the system with the added 

benefit of conserving energy expenditure under parameter 

variations and fast changing dynamics. Numerical 

simulations were used to confirm the controller's robustness 

and efficacy. In comparison to the ANN and MPC, the 

simulation results clearly show that the MRAC technique 

delivers appropriate performance in terms of process 

functional improvements, more flexibility, and improved 

system-tracking precision in control action. 
 

Index Terms: ANN, CSTR, Lyapunov, MPAC, MPC. 

I. INTRODUCTION 

tirred tank reactors are commonly employed in 

industry, particularly in the chemical and biochemical 

industries. In almost every facility in the chemical and 

materials industries, reactors are utilized to transform 

basic raw materials into products. Nonlinearities can have 

a negative impact on chemical plants, hence a control 

method to cancel them out is essential. Due to their 

nonlinearity chaotic behavior and the presence of 

numerous stable and unstable equilibrium points, 

chemical reactors pose a difficult control problem. 

Because the input flow of the reactant or cooling liquid 

can be easily adjusted, CSTR is commonly utilized for 

control. Reactions that convert reactants to products 

result in a wide range of useful and necessary objects. 

Chemical reactors are necessary for modern civilization's 

safe, efficient, and consistent operation [1]. The CSTR 

mathematical model [2] describes the interaction between 

state variables within the reactor that are dependent on 

material or heat balances. Because of its nonlinear 

dynamic, the subject of temperature regulating CSTR is 

seen as an intriguing and contentious topic, particularly 

among control professionals. The great majority of 

traditional controllers are designed for linear time-

invariant systems [3]. According to this study, the 

CSTR's two outputs are the temperature of the reactor 

and the concentration of the reactant in the tank, with the 

coolant or jacket temperature being the adjustable 

variable. The control goals of this work are to develop a 

controller that controls CSTR temperature and preserves 

process stability while suppressing the effects of external 

disturbances using supervisor neural networks 

controllers, Model Predictive Control (MPC), and Model 

Reference Adaptive Control (MRAC)-based Lyapunov 

theory. Performed a comprehensive analysis based OID 

for CSTR presented in [4]. Optimal linear control 

techniques based on linearization have also been 

developed to assure the stability of continuously stirred 

tank reactors [5]. With    and   , [6] presents a robust 

resilient design technique for linear and nonlinear CSTR 

models. [7] presents design methodologies based on a 

variety of models and strategies based on a blend of 

neural networks and model predictive control. The 

following is a description of the structure of the paper: In 

Section II, the CSTR model dynamics are explained. The 

control design methodology is presented in Section III. In 

section IV, numerical simulations are demonstrated. 

There is a conclusion in section V. 

II. DYNAMIC MODEL OF CSTR 

A process model is a set of equations that can be used 

to predict the behavior of a chemical reaction. Internal 

balances are employed to derive the CSTR mathematical 

formulation; it's worth noting that the reactor is enclosed 

in a jacket that divides the feed and exhaust streams. By 

transferring the energy through the reactor walls and into 
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the jacket, the heat generated by the reaction is dispersed. 

The goal is to maintain an acceptable temperature in the 

reacting mixture T. The following assumptions were used 

to develop modeling equations for a CSTR based on Ref 

[8,9]. Inside the reactor, there is optimum mixing, and the  

reactor's characteristics and volume are constant. The 

manipulated variable is the cooling jacket temperature Tj 

as presented in Figure. 1. 

 

 
 

Figure 1. Process flow of CSTR with cooling jacket [8] 

 

To build the mathematical model for this process, mass 

and energy balances are done, and appropriate 

constitutive equations are added [8,9]. 

A. Mass Balance 

The following is the general equation for a mass  
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Where 

  : The concentration of product A in the reactor. 

    : The Concentration of A in the feed stream. 

F:   The volumetric flow rate of the feed 

 :  Volume of the tank. 

   : Rate of reaction per unit volume. 

  : Reaction rate constant. 

 

The following equation [8] may be used to calculate the 

rate of generation of moles in the system: 
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B. Energy balance 

     The following is a generic equation for an energy 

balance in CSTR:  

  

      
  

  
 =    (    )     (  ) + UA (    )    (4) 

Where 

T: The temperature reactor. 

  : The feed temperature. 

  : activation energy. 

R: ideal gas constant. 

  : Heat capacity.  

  : Heat of reaction 

UA: Overall heat transfer 

    : Density*Heat capacity 
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The final equation becomes  
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The parameters that will appear in the CSTR modeling 

equations are listed in Table 1.  Figures 2 show the 

Simulink model and S- function of CSTR process. Figure 

3 depicts the temperature and concentration outputs open 

loop responses. According to the open loop response, the 

CSTR process output never reaches the set points, and the 

dynamic behavior of the CSTR process varies at different 

operating points. To reduce error and improve transient 

responsiveness, a controller must be built. 

Table 1. Parameters of CSTR Model [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a. Simulink model of CSTR 

 

 
 

Reactor 

parameters 
Values Units 

   32400 BTU/lbmol 

   15 1012                  

   -45000 BTU/lbmol 

UA 75 1221 BTU/h-F 

     53.25 BTU/    

R 1.987 BTU/lbmol-F 

V 750            

F 3000               

    0.132 Lbmol/    
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b. S-function of  CSTR 

Fig. 2. Simulink model and S-function of CSTR 

 

Figure. 3. Temperature and comcentration response of open loop CSTR                                   

III. CONTROL DESIGN METHODOLOGY 

    The temperature is the "dominant variable" in many 

chemical reactors. The term "dominating variable" refers 

to a factor that has a significant impact on the reactor's 

economics, quality, safety, and operability. This section 

covers the design of a temperature controller. The coolant 

or jacket temperature is the only controlled variable in 

CSTR, and the reactor temperature and reactant 

concentration in the tank are the only two outputs. The 

controller design for the system is evaluated using 

various controller approaches, including Design ANN 

Controller Based Supervised Control, design Model 

Predictive Control (MPC) and design Model Reference 

Adaptive Control (MRAC). 

A. Design ANN Controller Based Supervised Control 

     Artificial neural networks (ANN) mimic the way 

neurons in human brain function. They are made up of 

multiple layers of artificial neurons that are connected to 

one another. Each layer in Figure. 4 has a number of P 

inputs. Each input is given a weight W, which is 

combined with a bias B to get the total equation PW + B. 

The sum equation is used to calculate the output, which is 

then fed into an activation function. Training methods are 

employed to train the ANN, which alters the weight W 

according to a cost function. Backpropagation is a 

common method for reducing error by changing the 

weights by computing the function's gradient [9]. 

 

 

Figurer 4. ANN structure 

 

     When employing ANN in control, there are two basic 

steps: system identification and control design. This 

control's identification stage entails training a neural 

network to display the plant's forward dynamics. For the 

model approximation, a neural network model of the 

plant that has to be controlled is created using two sub-

networks. The following is the neuronal model: 

          (   )     ( )    (     )  
                              (   )      (     )             (7) 

    

     where y(t) is the system output, u(t) is the system 

input and d is the relative degree (    ). Multilayer 

neural networks can be used to identify the function F. 

The identification model has the form: 
     ̂(   )     ( )     (       (   )    (    
                    )     ( )   (       (   )   (  
                          )     ( )                                                (8) 

             
Where  ̂(   )  is the estimate of  (   )  
Identification is carried out at every instant t by adjusting 

the parameters of the neural network using the error 

 ( )   ( )   ̂( ) . For a system output, y(t+d) is used, 

and for a reference trajectory yr(t+d). f and g are 

activation functions of the hidden layer, where the input 

units are only buffer units which pass the signals without 

changing them. The output unit is linear units. The 

hidden units are non-linear Polywog wavelet activation 

functions, as shown in Figure 5.  

 

 
Figure 5: Polywog wavelet function 

 

   For each sub-network, the linear activation function 

uses the output layer. The controller output will have the 

form: 

 

         ( )  
  (   )    ( )    (       (   )   (     ) 

   ( )   (       (   )    (     ) 
             (9) 

 
    Using an existing controller, it is possible to teach a 

neural network the correct actions. Supervised learning is 

the term for this form of control. But why would we want 

to duplicate an already-functioning controller? The 

operational point is at the heart of most classic 

controllers. This means that if the plant operates around a 

given point, the controller will work well. If there is any 

ambiguity or change in an unknown plant, these 

controllers, such as PID controllers, will fail. The benefits 

of neuro-control include that if there is an uncertainty in 
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the plant, the ANN can modify its settings and continue 

to operate the plant when other robust controllers would 

fail. 

 

 

Figure. 6: Supervised learning using an existing controller 

    In supervised control, a teacher instructs the neural 

network on how to learn the proper actions (Fig. 6). The 

targets are provided by an existing controller during 

offline training, and the neural network adjusts its 

weights until the ANN's output is identical to the 

controller's. The neural network is placed in the feedback 

loop after it has been trained. The ANN should be able to 

regulate the process because it was trained using the 

existing controller targets. At this point, the process is 

controlled by an ANN, which works in the same way as 

the present controller. The ability to be adaptive online is 

the true benefit of neuro-control (Fig. 7). The weights are 

adjusted online using an error signal (desired signal – real 

output signal). If the process encounters a big disturbance 

uncertainty, the large error signal is fed back into the 

ANN, which adjusts the weights to keep the system stable 

[2, 9]. 

 

 
 

Figure. 7: Adaptive neural control 

 

B. Model Predictive Control (MPC) 

MPC is an advanced control method that may be used 

to solve challenging multivariable control issues. MPC 

displays its main strength when applied to problems with 

time delays, change performance and constrains 

controlled variables. In MPC, the fundamental control 

approach is to choose a set of future control called a 

control horizon and minimize a cost function based on 

the required target trajectory over a prediction horizon of 

a certain duration. The MPC approach is depicted in 

Figure. 8 where (P) is the prediction horizon and (C) is 

the control horizon. The future outputs (y(n+k) for 

k=1...P) of the system across a prediction horizon (P) are 

predicted at each instant using the process model and 

future inputs (u(n), u(n+1),..., u(n+C))  .  The system is 

programmed with a set of future inputs that minimize the 

objective function. Because a new output measurement 

might be present at the next sampling instant, just the first 

element of the future input is applied to the process. This 

operation is repeated with the addition of fresh 

measurements for the following sampling period, which 

is referred to as the receding approach. To create an MPC 

controller, the controlled variable's set point must be 

objectified. For any input and output, the value of the 

minimum and maximum weight restriction [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. MPC Strategy [10] 

 

    MPC's basic structure is depicted in Fig. 9. A model is 

used to forecast future outputs based on the system's 

previous inputs and outputs. At each time step, a 

comparison is made between the plant's predicted output 

and the reference trajectory, and the plant's future errors 

are calculated. The optimizer determines the best future 

inputs while taking into account the objective function 

and constraints. The plant receives only the first element 

of this ideal set, and the cycle is repeated at the following 

sampling period. 
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Figure. 9: Basic Structure of MPC 
 

   The benefit of a step response model is that the model 

coefficients may be determined from process input output 

data without assuming a model structure, and it can be 

used to any linear system. 

   A unit step is given to the system so as to obtain a 

process step response model.  In Figure. 10, the ai values 

are the step response coefficients and hi values are the 

impulse response coefficients. 

 
 

Figure 10: An Open Loop Step Response of a Linear Process 

 

   The step response coefficients are the summation of all 

impulse response coefficients as given in the following 

equation. 

                             ∑   
 
                              (10) 

 
   The discrete convolution model using step response 

coefficients can be written as  

 

              ̂       ∑   
 
                            (11) 

 

    In terms of the local predictive controller, a non-linear 

plant can be modelled by a locally linearized CARIMA 

model (Controlled Autoregressive and Integrated Moving 

Average Model) when addressing regulation regarding a 

specific operating point [10]: 
 

 (   ) ( )   (   ) (   )   (   )  ( )  ⁄      (12) 
 

where A and B are polynomials in the backward shift 

operator    1, is the differencing operator 1-    
 

 (   )       
             

 (   )        
         

   
 

y(t) is the output and u(t) is the control input, if the plant 

has a non-zero dead-time, the leading elements of the 

polynomial  (   )are zero. and  ( ) is an uncorrelated 

random sequence. For simplicity,  (   )is chosen to be 

1.  The predictive control law's goal is to get future plant 

outputs y(t+j) as near to the desired reference yr(t+j) as 

possible in order to minimize a cost function of the form: 
 
 

    (     )   {
∑   (   )    (   )  

  
    

  ∑  ( )   (     )    
   

}         (13) 

 
 

    here N1 and N2 are the minimum and the maximum 

costing horizon, Nu is the Control horizon and l   (j) is a 

control weighting sequence. Several SIMULINK models 

presented in MPC demonstration in MATLAB were used 

to create the steady state computations, dynamic 

behavior, and controller programming. In next section the 

adaptive controller based MRAC, which will be 

presented.  

C. Model Reference Adaptive Control (MRAC) 

Adaptive control techniques are system-theoretical 

tools for achieving closed-loop system stability and 

performance in the presence of system uncertainties. 

They are categorized as direct or indirect. Model 

reference adaptive control topologies are a well-known 

type of direct adaptive control technique as illustrated in 

figure. 11, these designs use two key components: a 

reference model and a parameter modification method. 

Where ym(t) is the reference model's output signal and 

y(t) is the real plant's output signal. Two feedback loops 

exist in the system: one that includes the controller and 

the process, and another that modifies the controller 

settings. The parameters are tweaked based on error 

feedback. The conventional feedback loop is the inner 

loop, whereas the parameter adjustment loop is the outer 

loop. Lyapunov's stability theory can be used to establish 

the process for modifying the parameters in a MRAC 

[11]. The structure  of MRAC Based on the Lyapunov 

rule is presented in figure. 12 [9,12]. 

 
 

Figure. 11.  Model Reference Adaptive Control [9,10] 
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Figure 12.  MRAC based on Lyapunov rule [9,11] 

 

Typically, the reference model is considered to be a 

first-order system with the following differential equation 

[9]:  

                       
   

  
                                (14) 

Where 

      The reference model's output. 

    : The reference signal . 

    ,    : is desired constant.  

A first order model is used to explain the process to be 

managed.                   

                             
  

  
                                  (15) 

Where a, b is desired constant, y is the output of the plant 

and u is the input signal. Let the controller be 

                    ( )      ( )     ( )                     (16) 

The values of the controller parameters (  ,  ) are 

determined by the reference input signal (  ) as well as 

the error e(t). 

                          ( )   ( )    ( )                      (17) 

Hence 

  
  ( )

  
     (        )  (      )    (18) 

The error goes zero when the parameters 

                                   
  

 
                                    (19) 

                                  
    

 
                                 (20) 

    A quadratic function is used to ensure Lyapunov 

stability while the parameter modification process drives 

parameters   and    to their target values. 

 (       )  
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(        )  

                           
 

  
(      ) )                                (21)                                                  

   This function is zero when e is zero and the controller 

parameters are equal to the correct values.  
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(22)   

  The above-mentioned quadratic function is considered 

to be a Lyapunov function if the derivative is negative. 

Where γ is the adaptation gain. If the parameters are 

updated as 

                            
   

  
                                        

(23) 

                             
   

  
                                          

(24) 

and 

                             
  

  
                                          

(25) 

 

As a result, negative semi-definite. As a result, 

V(t) V(0) and hence e ,  and    must be limited. 

 As a result, the y = e +  m system's output is also 

limited. 

The adjustment law based on Lyapunov stability is given 

by 

                             
  

  
                                 (26) 

The adaptation law discussed above is typically 

applied to the first or second system, but it has been 

demonstrated that it may be applied to a considerably 

broader variety of systems. As a consequence, unless the 

performance of the adaptation law is proved to be 

insufficient, a separate adaptation law does not need to be 

computed when switching to a different plant or model.  

The following equation gives the conventional form of 

the second-order system for the model reference [9,13]. 

                       ( ) = 
  

 

           
                       (27) 

Temperature control requirements include a maximum 

Overshoot (    ) 5%, settling time (Ts) less than 1.7 

seconds, and a steady-state error (Ess) less than 0.01. 

From the above specification, ξ =0.8 and   =3 rad/s. As 

a result, the reference model's transfer function is 

                         ( )  
 

         
                           (28) 

IV. SIMULATION  RESULTS 

    The proposed ANN architecture is shown in Figure. 

13. The neural network training parameters of NN are 

learning parameter = 0.45, moment term =0.25, iteration 

number 1500, Initial bias =0, Initial weights = 0 and 

hidden later neurons 7. The Resilient Back-propagation 

algorithm is used to adjust the weights of the neural 

network. 

     

 

 

 

 

 

Model feedforward (FF) Neural Network 
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   Two layers neural network 

 

 

 

 

 

 

 

 

 

 

 

 

The output layer weights of neural network  

Figure 13. Structure feedforward (FF) neural network 

   The neural controller was trained to regulate the CSTR 

using a feedback controller based PID. The ability of the 

neural controller to track changes linked to the set-point 

has been det ermined through tests. The ideal structure of 

the neural controller was identified by a study of several 

structures utilizing 1000 input and output data. The mean 

square error of the multi-layer NN is depicted in the 

diagrams below (Figures. 14 and 15). The inaccuracy 

between the network and the output plant is considerable 

at the start of the training. The mean square error 

decreases as the number of epochs increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14.: The training temperature error decrease as the NN  learns 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 15. The training concentration error decrease as the NN  learns 

    ANN, MPC and MRAC are all attached separately to 

the CSTR model that is built in the SIMULINK 

environment. The temperature and concentration 

responses when the ANN is applied to the system are 

offered in figure. 16. The results demonstrate that the 

system is stable and its transient responses are 

convenient.  

 
Figure 16.  Temperature and concentartion responses of CSTR based 

ANN controller 

 

The MPC for a (CSTR) designing using MPC Designer 

toolbox. The sample time, of 0.5 seconds, and with all 

other properties at their default values, including a 

prediction horizon of 10 steps and a control horizon 

of 2 steps. The temperature and concentration responses 

when the MPC is applied to the system are shown in fig. 

17. 
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Figure 17.  Temperature and concentartion responses of CSTR based 

MPC 

 

The parameters of the MRAC controllers    
    

 
 , 

   
    

 
 and the adaptation gain values        The 

temperature and concentration responses when the 

MRAC is applied to the system are shown in figure. 18 

[9]. 

 

 
Figure 18.  Temperature and concentartion response of CSTR based  

MRAC                                       

 

    MRAC is superior to MPC and ANN controller in 
terms of simulation results. Here, the designed controllers 
are tested when there is an external disturbance to the 
system. As shown in figure. 19 to figure. 21. The 
adaptive controller has more ability and effectiveness to 
reject the influence of noise compared with MPC and 
ANN controllers. 
 

 
Figure 19. Temperature and concentartion response of CSTR based 

ANN controller with noise signal 
 

Figure 20. Temperature and concentartion response of CSTR based 
MPC controller with noise signal 

 
 

 
Figure 21. Temperature and concentartion response of CSTR based 

MRAC controller with noise signal 
 

Figure 22 and 23 present the tracking responses of 
CSTR for different desired level. The performance of this 
system with both controllers has been compared and the 
result is presented in Table 2. From the previous results, 
we can draw that, the adaptive controller is robust and 
provides temperature control for CSTR with optimum 
performance. Figure 24. present the cost function for 
different controllers.  
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Figure 22. Tracking temperature response of CSTR based ANN, MPC 

and MRAC  

 

Figure 23. Tracking concentration response of CSTR based ANN, MPC 
and MRAC  

Table 2. Comparison of performance between ANN, MPC and MRAC 

 

Control 

 type 
OS% 

 

Ts 

 (Sec) 
Ess 

 

Cost  

function 

Effect  

of noise  

ANN 24 1.5  0 25.5 
High  

Effected  

MPC 8 2.8 0 10.8 
Medium 

Effected 

MRAC 5 1.4 0 6.4  
Low  

Effected  

 

 
Figure 24: Cost function of ANN, MPC and MRAC 

 

V. CONCLUSION 

    Various control strategies such as ANN, MPC, and 

MRAC were proposed and assessed using extensive 

simulations. The performance of the recommended 

controllers in terms of their characteristic time domain 

was assessed in the presence of undesirable situations. 

Based on the simulation findings, the three controllers 

were successfully designed. In terms of process 

functional minor adjustments, the results suggest that 

both proposed control approaches work well. The MRAC 

controller, according to the simulation results, is perfect 

since it has 0% steady-state error. The MRAC also 

maintains a steady performance in the presence of noise. 

Furthermore, the MRAC method gives more flexibility 

and precision in control action than the ANN and MPC 

strategies. In other words, the resiliency of the offered 

strategies in dealing with uncertainties during the 

tracking of the reference signal is taken into account. 
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